• Что можно приготовить из кальмаров: быстро и вкусно

    Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    1) погрешности измерений могут принимать непрерывный ряд значений;

    2) при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    3) чем больше величина случайной погрешности, тем меньше вероятность ее появления.

    График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

    где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

    Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

    Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

    где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

    Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

    Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

    Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .


    Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

    Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

    Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

    В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

    Доверительный интервал для среднего арифметического : .

    Здесь - выборочное среднее;

    Средняя ошибка среднего арифметического;

    s – выборочное среднее квадратическое отклонение;

    n

    f = n -1 (коэффициент Стьюдента).

    Доверительный интервал для разности средних арифметических :

    Здесь - разность выборочных средних;

    - средняя ошибка разности средних арифметических;

    s 1 ,s 2 – выборочные средние квадратические отклонения;

    n 1 ,n 2

    Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

    Доверительный интервал для доли :

    .

    Здесь d – выборочная доля;

    – средняя ошибка доли;

    n – объём выборки (численность группы);

    Доверительный интервал для разности долей :

    Здесь - разность выборочных долей;

    – средняя ошибка разности средних арифметических;

    n 1 ,n 2 – объёмы выборок (численности групп);

    Критическое значение критерия z при заданном уровне значимости a ( , , ).

    Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

    При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

    Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

    Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

    По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

    Примеры:

    Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

    d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

    Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

    Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

    В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

    Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

    Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

    Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

    Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.

    Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

    Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

    Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

    Мощность критерия можно использовать при предварительном определении необходимой численности групп.

    Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

    С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

    ЛИТЕРАТУРА.

    Гланц С. – Глава 6,7.

    Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

    Сидоренко Е. В. – с.32-33.

    Вопросы для самопроверки студентов.

    1. Что такое мощность критерия?

    2. В каких случаях необходимо оценить мощность критериев?

    3. Способы расчёта мощности.

    6. Как проверить статистическую гипотезу с помощью доверительного интервала?

    7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

    Задачи.

    Доверительный интервал для математического ожидания - это такой вычисленный по данным интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности. Естественной оценкой для математического ожидания является среднее арифметическое её наблюденных значений. Поэтому далее в течение урока мы будем пользоваться терминами "среднее", "среднее значение". В задачах рассчёта доверительного интервала чаще всего требуется ответ типа "Доверительный интервал среднего числа [величина в конкретной задаче] находится от [меньшее значение] до [большее значение]". С помощью доверительного интервала можно оценивать не только средние значения, но и удельный вес того или иного признака генеральной совокупности. Средние значения, дисперсия, стандартное отклонение и погрешность, через которые мы будем приходить к новым определениям и формулам, разобраны на уроке Характеристики выборки и генеральной совокупности .

    Точечная и интервальная оценки среднего значения

    Если среднее значение генеральной совокупности оценивается числом (точкой), то за оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое рассчитано по выборке наблюдений. В таком случае значение среднего выборки - случайной величины - не совпадает со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка , которая выражена в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись: .

    Если оценку среднего требуется связать с определённой вероятностью, то интересующий параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью P = 1 - α находится случайная величина , рассчитывается следующим образом:

    ,

    α = 1 - P , которое можно найти в приложении к практически любой книге по статистике.

    На практике среднее значение генеральной совокупности и дисперсия не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки , а среднее генеральной совокупности - средним значением выборки . Таким образом, доверительный интервал в большинстве случаев рассчитывается так:

    .

    Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если

    • известно стандартное отклонение генеральной совокупности;
    • или стандартное отклонение генеральной совокупности не известно, но объём выборки - больше 30.

    Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности . В свою очередь, дисперсия выборки не является несмещённой оценкой дисперсии генеральной совокупности . Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n -1.

    Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.

    где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

    Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.

    Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:

    сумма значений в наблюдениях ,

    сумма квадратов отклонения значений от среднего .

    Вычислить доверительный интервал 95 % для математического ожидания.

    вычислим стандартное отклонение:

    ,

    вычислим среднее значение:

    .

    Подставляем значения в выражение для доверительного интервала:

    где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

    Получаем:

    Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.

    Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?

    Подставляем данные значения в выражение для доверительного интервала:

    где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

    Получаем:

    .

    Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.

    Вновь подставляем данные значения в выражение для доверительного интервала:

    где - критическое значение стандартного нормального распределения для уровня значимости α = 0,01 .

    Получаем:

    .

    Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.

    Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.

    Точечная и интервальная оценки удельного веса

    Удельный вес некоторого признака выборки можно интерпретировать как точечную оценку удельного веса p этого же признака в генеральной совокупности. Если же эту величину нужно связать с вероятностью, то следует рассчитать доверительный интервал удельного веса p признака в генеральной совокупности с вероятностью P = 1 - α :

    .

    Пример 4. В некотором городе два кандидата A и B претендуют на пост мэра. Случайным образом были опрошены 200 жителей города, из которых 46% ответили, что будут голосовать за кандидата A , 26% - за кандидата B и 28% не знают, за кого будут голосовать. Определить доверительный интервал 95% для удельного веса жителей города, поддерживающих кандидата A .

    ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ ДЛЯ ЧАСТОТ И ДОЛЕЙ

    © 2008 г.

    Национальный институт общественного здоровья, г. Осло, Норвегия

    В статье описывается и обсуждается расчет доверительных интервалов для частот и долей по методам Вальда, Уилсона, Клоппера – Пирсона, с помощью углового преобразования и по методу Вальда с коррекцией по Агрести – Коуллу. Изложенный материал дает общие сведения о способах расчета доверительных интервалов для частот и долей и призван вызвать интерес читателей журнала не только к использованию доверительных интервалов при представлении результатов собственных исследований, но и к прочтению специализированной литературы перед началом работы над будущими публикациями.

    Ключевые слова : доверительный интервал, частота, доля

    В одной из предыдущих публикаций кратко упоминалось описание качественных данных и сообщалось, что их интервальная оценка предпочтительнее точечной для описания частоты встречаемости изучаемой характеристики в генеральной совокупности . Действительно, поскольку исследования проводятся с использованием выборочных данных, проекция результатов на генеральную совокупность должна содержать элемент неточности выборочной оценки. Доверительный интервал представляет собой меру точности оцениваемого параметра. Интересно, что в некоторых книгах по основам статистики для медиков тема доверительных интервалов для частот полностью игнорируется . В данной статье мы рассмотрим несколько способов расчета доверительных интервалов для частот, подразумевая такие характеристики выборки, как бесповторность и репрезентативность, а также независимость наблюдений друг от друга. Под частотой в данной статье понимается не абсолютное число, показывающее, сколько раз встречается в совокупности то или иное значение, а относительная величина , определяющая долю участников исследования, у которых встречается изучаемый признак.

    В биомедицинских исследованиях чаще всего используются 95 % доверительные интервалы. Данный доверительный интервал представляет собой область, в которую попадает истинное значение доли в 95 % случаев. Другими словами, можно с 95 % надежностью сказать, что истинное значение частоты встречаемости признака в генеральной совокупности будет находиться в пределах 95 % доверительного интервала.

    В большинстве пособий по статистике для исследователей от медицины сообщается , что ошибка частоты рассчитывается с помощью формулы

    где p – частота встречаемости признака в выборке (величина от 0 до 1). В большинстве отечественных научных статей указывается значение частоты встречаемости признака в выборке (р), а также ее ошибка (s) в виде p ± s. Целесообразнее, однако, представлять 95 % доверительный интервал для частоты встречаемости признака в генеральной совокупности, который будет включать значения от

    до.

    В некоторых пособиях рекомендуется при малых выборках заменять значение 1,96 на значение t для N – 1 степеней свободы, где N – количество наблюдений в выборке. Значение t находится по таблицам для t-распределения, имеющимся практически во всех пособиях по статистике. Использование распределения t для метода Вальда не дает видимых преимуществ по сравнению с другими методами, рассмотренными ниже , и потому некоторыми авторами не приветствуется .

    Представленный выше метод расчета доверительных интервалов для частот или долей носит имя Вальда в честь Авраама Вальда (Abraham Wald, 1902–1950), поскольку широкое применение его началось после публикации Вальда и Вольфовица в 1939 году . Однако сам метод был предложен Пьером Симоном Лапласом (1749–1827) еще в 1812 году.

    Метод Вальда очень популярен, однако его применение связано с существенными проблемами. Метод не рекомендуется при малых объемах выборок, а также в случаях, когда частота встречаемости признака стремится к 0 или 1 (0 % или 100 %) и просто невозможно для частот 0 и 1. Кроме того, аппроксимация нормального распределения, которая используется при расчете ошибки, «не работает» в случаях, когда n · p < 5 или n · (1 – p) < 5 . Более консервативные статистики считают, что n · p и n · (1 – p) должны быть не менее 10 . Более детальное рассмотрение метода Вальда показало, что полученные с его помощью доверительные интервалы в большинстве случаев слишком узки, то есть их применение ошибочно создает слишком оптимистичную картину, особенно при удалении частоты встречаемости признака от 0,5, или 50 % . К тому же при приближении частоты к 0 или 1 доверительный интревал может принимать отрицательные значения или превышать 1, что выглядит абсурдно для частот. Многие авторы совершенно справедливо не рекомендуют применять данный метод не только в уже упомянутых случаях, но и тогда, когда частота встречаемости признака менее 25 % или более 75 % . Таким образом, несмотря на простоту расчетов, метод Вальда может применяться лишь в очень ограниченном числе случаев. Зарубежные исследователи более категоричны в своих выводах и однозначно рекомендуют не применять этот метод для небольших выборок , а ведь именно с такими выборками часто приходится иметь дело исследователям-медикам.

    Поскольку новая переменная имеет нормальное распределение, нижняя и верхняя границы 95 % доверительного интервала для переменной φ будут равны φ-1,96 и φ+1,96left">

    Вместо 1,96 для малых выборок рекомендуется подставлять значение t для N – 1 степеней свободы . Данный метод не дает отрицательных значений и позволяет более точно оценить доверительные интервалы для частот, чем метод Вальда. Кроме того, он описан во многих отечественных справочниках по медицинской статистике , что, правда, не привело к его широкому использованию в медицинских исследованиях. Расчет доверительных интервалов с использованием углового преобразования не рекомендуется при частотах, приближающихся к 0 или 1 .

    На этом описание способов оценки доверительных интервалов в большинстве книг по основам статистики для исследователей-медиков обычно заканчивается, причем эта проблема характерна не только для отечественной, но и для зарубежной литературы. Оба метода основаны на центральной предельной теореме, которая подразумевает наличие большой выборки.

    Принимая во внимание недостатки оценки доверительных интервалов с помощью вышеупомянутых методов, Клоппер (Clopper) и Пирсон (Pearson) предложили в 1934 году способ расчета так называемого точного доверительного интервала с учетом биномиального распределения изучаемого признака . Данный метод доступен во многих онлайн-калькуляторах, однако доверительные интервалы, полученные таким образом, в большинстве случаев слишком широки. В то же время этот метод рекомендуется применять в тех случаях, когда необходима консервативная оценка. Степень консервативности метода увеличивается по мере уменьшения объема выборки, особенно при N < 15 . описывает применение функции биномиального распределения для анализа качественных данных с использованием MS Excel, в том числе и для определения доверительных интервалов, однако расчет последних для частот в электронных таблицах не «затабулирован» в удобном для пользователя виде, а потому, вероятно, и не используется большинством исследователей.

    По мнению многих статистиков , наиболее оптимальную оценку доверительных интервалов для частот осуществляет метод Уилсона (Wilson), предложенный еще в 1927 году , но практически не используемый в отечественных биомедицинских исследованиях. Данный метод не только позволяет оценить доверительные интервалы как для очень малых и очень больших частот, но и применим для малого числа наблюдений. В общем виде доверительный интервал по формуле Уилсона имеет вид от



    где принимает значение 1,96 при расчете 95 % доверительного интервала, N – количество наблюдений, а р – частота встречаемости признака в выборке. Данный метод доступен в онлайн-калькуляторах, поэтому его применение не является проблематичным. и не рекомендуют использовать этот метод при n · p < 4 или n · (1 – p) < 4 по причине слишком грубого приближения распределения р к нормальному в такой ситуации, однако зарубежные статистики считают метод Уилсона применимым и для малых выборок .

    Считается, что помимо метода Уилсона метод Вальда с коррекцией по Агрести – Коуллу также дает оптимальную оценку доверительного интервала для частот . Коррекция по Агрести – Коуллу представляет собой замену в формуле Вальда частоты встречаемости признака в выборке (р) на р`, при расчете которой к числителю добавляется 2, а к знаменателю добавляется 4, то есть p` = (X + 2) / (N + 4), где Х – количество участников исследования, у которых имеется изучаемый признак, а N – объем выборки . Такая модификация приводит к результатам, очень похожим на результаты применения формулы Уилсона, за исключением случаев, когда частота события приближается к 0 % или 100 %, а выборка мала . Кроме вышеупомянутых способов расчета доверительных интервалов для частот были предложены поправки на непрерывность как для метода Вальда, так и для метода Уилсона для малых выборок, однако исследования показали, что их применение нецелесообразно .

    Рассмотрим применение вышеописанных способов расчета доверительных интервалов на двух примерах. В первом случае мы изучаем большую выборку, состоящую из 1 000 случайно отобранных участников исследования, из которых 450 имеют изучаемый признак (это может быть фактор риска, исход или любой другой признак), что составляет частоту 0,45, или 45 %. Во втором случае исследование проводится с использованием малой выборки, допустим, всего 20 человек, причем изучаемый признак имеется всего у 1 участника исследования (5 %). Доверительные интервалы по методу Вальда, по методу Вальда с коррекцией по Агрести – Коуллу, по методу Уилсона рассчитывались с помощью онлайн-калькулятора, разработанного Jeff Sauro (http://www. /wald. htm). Доверительные интервалы по методу Уилсона с поправкой на непрерывность рассчитывались с помощью калькулятора, предложенного порталом Wassar Stats: Web Site for Statistical Computation (http://faculty. vassar. edu/lowry/prop1.html). Расчеты с помощью углового преобразования Фишера производились «вручную» с использованием критического значения t для 19 и 999 степеней свободы соответственно. Результаты расчетов представлены в таблице для обоих примеров.

    Доверительные интервалы, рассчитанные шестью разными способами для двух примеров, описанных в тексте

    Способ расчета доверительного интервала

    Р=0,0500, или 5%

    95% ДИ для X=450, N=1000, Р=0,4500, или 45%

    –0,0455–0,2541

    Вальда с коррекцией по Агрести – Коуллу

    <,0001–0,2541

    Уилсона с коррекцией на непрерывность

    «Точный метод» Клоппера – Пирсона

    Угловое преобразование

    <0,0001–0,1967

    Как видно из таблицы, для первого примера доверительный интервал, рассчитанный по «общепринятому» методу Вальда заходит в отрицательную область, чего для частот быть не может. К сожалению, подобные казусы нередки в отечественной литературе. Традиционный способ представления данных в виде частоты и ее ошибки частично маскирует эту проблему. Например, если частота встречаемости признака (в процентах) представлена как 2,1 ± 1,4, то это не настолько «режет глаз», как 2,1 % (95 % ДИ: –0,7; 4,9), хоть и обозначает то же самое. Метод Вальда с коррекцией по Агрести – Коуллу и расчет с помощью углового преобразования дают нижнюю границу, стремящуюся к нулю. Метод Уилсона с поправкой на непрерывность и «точный метод» дают более широкие доверительные интервалы, чем метод Уилсона. Для второго примера все методы дают приблизительно одинаковые доверительные интервалы (различия появляются только в тысячных), что неудивительно, так как частота встречаемости события в этом примере не сильно отличается от 50 %, а объем выборки достаточно велик.

    Для читателей, заинтересовавшихся данной проблемой, можно порекомендовать работы R. G. Newcombe и Brown, Cai и Dasgupta , в которых приводятся плюсы и минусы применения 7 и 10 различных методов расчета доверительных интервалов соответственно . Из отечественных пособий рекомендуется книга и , в которой помимо подробного описания теории представлены методы Вальда, Уилсона, а также способ расчета доверительных интервалов с учетом биномиального распределения частот. Кроме бесплатных онлайн-калькуляторов (http://www. /wald. htm и http://faculty. vassar. edu/lowry/prop1.html) доверительные интервалы для частот (и не только!) можно рассчитывать с помощью программы CIA (Confidence Intervals Analysis), которую можно загрузить с http://www. medschool. soton. ac. uk/cia/ .

    В следующей статье будут рассмотрены одномерные способы сравнения качественных данных.

    Список литературы

    Медицинская статистика понятным языком: вводный курс / А. Банержи. – М. : Практическая медицина, 2007. – 287 с. Медицинская статистика / . – М. : Медицинское информационное агенство, 2007. – 475 с. Медико-биологическая статистика / С. Гланц. – М. : Практика, 1998. Типы данных, проверка распределения и описательная статистика / // Экология человека – 2008. – № 1. – С. 52–58. С . Медицинская статистика: учебное пособие / . – Ростов н/Д: Феникс, 2007. – 160 с. Прикладная медицинская статистика / , . – СПб. : Фолиант, 2003. – 428 с. Ф . Биометрия / . – М. : Высшая школа, 1990. – 350 с. А . Математическая статистика в медицине / , . – М. : Финансы и статистика, 2007. – 798 с. Математическая статистика в клинических исследованиях / , . – М. : ГЭОТАР-МЕД, 2001. – 256 с. Юнкеров В . И . Медико-статистическая обработка данных медицинских исследований / , . – СПб. : ВмедА, 2002. – 266 с. Agresti A. Approximate is better than exact for interval estimation of binomial proportions / A. Agresti, B. Coull // American statistician. – 1998. – N 52. – С. 119–126. Altman D. Statistics with confidence // D. Altman, D. Machin, T. Bryant, M. J. Gardner. – London: BMJ Books, 2000. – 240 p. Brown L. D. Interval estimation for a binomial proportion / L. D. Brown, T. T. Cai, A. Dasgupta // Statistical science. – 2001. – N 2. – P. 101–133. Clopper C. J. The use of confidence or fiducial limits illustrated in the case of the binomial / C. J. Clopper, E. S. Pearson // Biometrika. – 1934. – N 26. – P. 404–413. Garcia-Perez M. A . On the confidence interval for the binomial parameter / M. A. Garcia-Perez // Quality and quantity. – 2005. – N 39. – P. 467–481. Motulsky H. Intuitive biostatistics // H. Motulsky. – Oxford: Oxford University Press, 1995. – 386 p. Newcombe R. G. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods / R. G. Newcombe // Statistics in Medicine. – 1998. – N. 17. – P. 857–872. Sauro J. Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations / J. Sauro, J. R. Lewis // Proceedings of the human factors and ergonomics society annual meeting. – Orlando, FL, 2005. Wald A. Confidence limits for continuous distribution functions // A. Wald, J. Wolfovitz // Annals of Mathematical Statistics. – 1939. – N 10. – P. 105–118. Wilson E. B . Probable inference, the law of succession, and statistical inference / E. B. Wilson // Journal of American Statistical Association. – 1927. – N 22. – P. 209–212.

    CONFIDENCE INTERVALS FOR PROPORTIONS

    A. M. Grjibovski

    National Institute of Public Health, Oslo, Norway

    The article presents several methods for calculations confidence intervals for binomial proportions, namely, Wald, Wilson, arcsine, Agresti-Coull and exact Clopper-Pearson methods. The paper gives only general introduction to the problem of confidence interval estimation of a binomial proportion and its aim is not only to stimulate the readers to use confidence intervals when presenting results of own empirical research, but also to encourage them to consult statistics books prior to analysing own data and preparing manuscripts.

    Key words : confidence interval, proportion

    Контактная информация:

    старший советник Национального института общественного здоровья, г. Осло, Норвегия

    Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

    Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

    Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

    С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

    На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

    Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

    хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

    α - признак,

    t - параметр из таблицы распределения Лапласа,

    σ - квадратный корень дисперсии.

    Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

    σ2 = х2ср - (хср)2, где

    х2ср - среднее значение квадратов исследуемого признака,

    (хср)2 - квадрат данного признака.

    Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

    хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

    хср - выборочное среднее,

    α - признак,

    t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

    sqrt(n) - квадратный корень общего объема выборки,

    s - квадратный корень дисперсии.

    Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

    Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

    хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

    30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

    21.587 <= α <= 38.413

    Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

    Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.