• Что можно приготовить из кальмаров: быстро и вкусно

    Сегодня среди всех видов газопламенных обработок все большую популярность получает сварка водородная. Такая газосварочная технология основана прежде всего на процессе электрохимического распада воды на два химических элемента: водород и кислород.

    Процедура сварки отличается наибольшей эффективностью и обладает большими преимуществами перед сваркой, где главным элементом выступает соединение кислорода с ацетиленом.

    Водородную сварку можно отнести к категории безвредных технологий, так как весь процесс горения основан на единственном элементе – водяном паре. В ходе работы температура горелки может повыситься до 2600°С, а это значит, что данная технология позволит осуществить любую сварку, спаивание или поможет прорезать различные виды черных металлов.

    Читайте также:

    Технология процесса водородной сварки

    Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.

    При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.

    В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.

    Вернуться к оглавлению

    Виды сварочных аппаратов

    Для осуществления любого вида сварочных работ необходимо применять аппарат для сварки, отсутствие которого на любом строительном объекте или в бытовых условиях недопустимо. Ведь он является единственным аппаратом с возможностью скрепления изделий из металла.

    При водородной сварке использованию подлежит водородно-сварочное оборудование. Водородный аппарат используется не только для резки и спайки разных видов металлов, но и для отделки различного пластика, стекла или кварца.

    Этот вид оборудования подлежит использованию в отраслевых областях, где для работы нужен нагрев до максимальных температур.

    Сварочный аппарат работает за счет водорода, который вырабатывается в самом аппарате. Вследствие распада молекул воды на два важных элемента, кислород и водород, удается получить водород. После этого образуется газовая смесь, имеющая максимальную энергию. При помощи нее можно осуществлять работы по соединению различных металлических конструкций.

    Для того чтобы это устройство работало правильно, нужно подготовить 1,5 л дистиллированной воды и освободить доступ к сети электропитания.

    Это оборудование очень легко эксплуатируется, не требует частого перезаряжания и имеет небольшую трудоемкость. Работа начинается уже через несколько минут после включения в сеть электропитания. При помощи аппаратов водородной сварки можно осуществлять сварку деталей толщиной до трех миллиметров, а это значит, что он может использоваться ювелирами, стоматологами, специалистами по ремонту бытовой техники.

    Водородно-кислородные электролизеры отличаются мощностью, в зависимости от которой допускается выполнение различных сварочных работ.

    К ним относится спайка, сварочные работы, кислородная резка и другие. При сварке водородом можно выполнить огромный перечень работ, начиная с микросварки и заканчивая резкой стальных листов. Эти аппараты малогабаритные и могут применяться для сварки листов размером до 2 мм при мощности 1,8 кВт.

    В некоторых случаях применяются ацетиленовые генераторы и баллоны. Их целесообразно применять только в полевых условиях, где нет возможности использовать электричество. Если имеется разъем электропитания, то лучше использовать громоздкое сварочное оборудование.

    Атомно-водородная сварка немного отличается своим технологическим процессом от обычного вида таких работ. В процессе происходит подача водорода в сварочную область. При помощи сварочной горелки можно с легкостью определить направление и объем смеси.

    В ходе выполнения сварки с элементами кислорода и водорода, происходит оплавление краев горелки из-за слишком высокого уровня температуры. Поэтому она подлежит немедленному очищению. Такой процесс газосварки можно выполнить как в ручном, так и в автоматическом режиме.

    Специалисты, имеющие навыки в этой области, способны делать эти необходимые работы без чьей-либо помощи.

    Нужно просто купить аппарат для сварки с эффектом 210, где в упаковке имеется еще одна горелка. Этот аппарат начинает работу после включения его в сеть электропитания 220 Вт. Им можно легко достичь результата при резке металлических пластин небольшой толщины либо пластин из легированных сталей.

    Высокоэффективное водородно-кислородное пламя может служить качественной альтернативой ацетилено-кислородному пламени в процессах сварки, резки и пайки. Частично, водородно-кислородная сварка может стать заменой свариванию в среде инертных газов. Этот метод, в отличие от стандартных, является практически безвредным, поскольку продуктом горения в данном процессе является пар. Водородная сварка выполненная своими руками для исполнителей, владеющих навыками , не требует длительного переучивания, достаточным является краткий инструктаж

    Особенности водородно-кислородной сварки

    История газовой сварки насчитывает около ста лет. Основным горючим газом повсеместно являлся ацетилен. Исследования ученых показали, что использование водорода вместо ацетилена позволяет получить такую же производительность и высокое качество при сварке углеродистых сталей и других материалов. Водородная газовая сварка является разновидностью процессов газопламенной обработки материалов, происходящих с использованием смеси горючего газа с кислородом.

    Трудность состояла в том, что ацетилено-кислородное пламя по отношению к расплавленному железу является восстановительным, а водородно-кислородное – окислительным. Сварочная ванна при использовании водорода в качестве горючего газа покрывалась сплошным слоем шлака, шов становился пористым и хрупким. Проблему помогло решить использование органических веществ, обладающих способностью связывать кислород. В качестве таких добавок стали применять углеводороды, имеющие температуру кипения в пределах 30-80 градусов. Это могут быть бензины, гексан, гептан, толуол, бензол. Необходимое для процесса их количество крайне мало.

    Особенности водородного пламени

    После решения технологических вопросов затруднением оставалась газовая смесь для сварки в связи с отсутствием эффективного источника водорода. Использование водородных баллонов является крайне нерентабельным. К тому же, такие баллоны – источник повышенной опасности. Сжиженный водород может стать причиной сильных обморожений, большие концентрации этого вещества вызывают удушье и головокружения. Также, опасной особенностью водородного пламени является невидимость при дневном свете. Определить его можно только при помощи специальных датчиков.

    Создание электролизеров

    Решением проблемы стали электролизеры – аппараты, которые с помощью электрической энергии позволяют получать сразу, причем в оптимальном соотношении, и водород, и кислород. Очередной сложностью оказалась громоздкость оборудования, необходимого для выработки достаточного для промышленных целей количества горючей смеси. Существующие ранее передвижные аппараты могли обеспечить только потребности ювелиров и зубных техников. Стационарные аппараты, способные сваривать металл толщиной 5-6 мм, весили порядка 300 кг. В конце прошлого века был создан передвижной электролизер, с помощью которого стала возможна портативная газовая сварка с достаточным временем работы без дозаправки и приемлемой производительностью в условиях промышленности и на строительных площадках.

    Принцип работы водородно-кислородных электролизеров

    Водородно-кислородные газосварочные аппараты представляют собой электролизеры, в которых под воздействием электричества вода разлагается на кислород и водород. Сварочное оборудование может работать от бытовой или трехфазной электросети. Смесь водорода и кислорода подается по шлангу в стандартную ацетилено-кислородную сварочную горелку. Сущность газовой сварки с использованием водорода такая же, как и обычной газовой сварки. Водородно – кислородный сварочный аппарат

    Единственное отличие – применение водородно-кислородной смеси вместо привычных ацетилен-кислородной и пропан-кислородной.

    Сварочные водородно-кислородные аппараты разной мощности позволяют решить практически все задачи, ставящиеся перед газопламенной обработкой . С их помощью осуществляют: сварку, наплавку, пайку, термоупрочнение, порошковое напыление и порошковую наплавку, кислородную резку – ручную и машинную. Различные режимы газовой сварки с водородом дают возможность выполнения широкого спектра работ – от микросварки и микропайки пламенем толщиной с иголку до толщиной порядка 300 мм. Работа аппаратов может вестись и в ручном, и в автоматическом режимах.

    Даже малогабаритные переносные аппараты при такой незначительной мощности – 1,8 кВт, потребляемой от двухфазной бытовой сети, могут решить проблему сваривания и резки листов из черного и толщиной до 2 мм. Температуру чистого пламени можно легко отрегулировать от 600 до 2600 градусов. Такие электролизеры популярны среди стоматологов, ювелиров, ремонтников холодильных агрегатов.

    Более мощные модели водородно-кислородных сварочных аппаратов, позволяющие сваривать металл толщиной до 3 мм, приобрели популярность на станциях технического обслуживания, где применение взрывоопасных баллонов с кислородом и пропаном запрещено. Простая система контроля производительности позволяет использовать аппарат в самых труднодоступных зонах при ремонте блоков двигателей, радиаторов, ступиц, во время кузовных работ. В случае достижения предельных уровней давления и электролита встроенная контрольная система подает сигнал. Происходит автоматическое отключение аппарата от источника электрического питания. Такие меры предосторожности обеспечивают двойную пожарную и взрывобезопасность.

    Для профессионалов

    Для работников аварийных служб разработаны специальные аппараты, позволяющие с толщиной стенки до 5 мм в условиях отсутствия трехфазной сети. Эти электролизеры можно применять для заварки дефектных зон чугунного и цветного литья, ручной и машинной резки металлов с толщиной стенки до 30 мм. Такие способы газовой сварки осуществляют с питанием подогревающего пламени резака от аппарата и подачей режущего кислорода из баллона. Данная технология позволяет получать более чистый рез, чем при использовании ацетилена и пропана. При этом процессе не происходит науглероживание и закаливание металла, отсутствуют грат и загрязняющие атмосферу выбросы оксида азота. Такие модели электролизеров позволяют вести безопасную кислородную резку в тоннелях, колодцах, метрополитенах, где запрещается использование пропана и ацетилена. Некоторые аппараты подобного типа дают возможность проводить работы при отрицательных температурах окружающего воздуха.

    Водородная газовая сварка видео наглядно демонстрирует ход сварочного процесса с применением электролизера.

    Преимущества использования водородно-кислородных электролизеров

    Современные производители газосварочного оборудования предлагают электролизно-водные сварочные аппараты, обладающие рядом преимуществ по сравнению с традиционными способами сварки с использованием пропана и ацетилена.

    Ключевые особенности аппаратов:

    • Аппараты легки в эксплуатации – перезарядка нужна редко, а ее трудоемкость значительно ниже, чем трудозатраты при перезарядке генератора.
    • Быстрый выход в рабочий режим – 1-5 мин, в зависимости от необходимого расхода газа и температуры окружающей среды.
    • Возможность получения значительной мощности при небольших габаритных размерах оборудования.
    • Экологическая чистота сварочного процесса. Работа с ацетиленом сопровождается загрязнением среды токсичными оксидами азота. При сварке в помещениях норматив по содержанию азота, как правило, не выдерживается, что отрицательно сказывается на здоровье работников. В водородно-кислородных аппаратах единственным продуктом горения является абсолютно безвредный водяной пар.
    • Аппараты являются пожаровзрывобезопасным оборудованием как при работе, так и при хранении. Защитная одежда при водородно-кислородной сварке такая же, как и при обычной газовой: плотная роба, рукавицы, очки для газовой сварки.

    Использование ацетиленовых генераторов и баллонов является целесообразным исключительно в полевых условиях при отсутствии источников электроэнергии. Во всех других случаях громоздкое газосварочное оборудование могут заменить высокоэффективные, удобные, долговечные аппараты, работающие на электричестве и воде.

    Подвидом дуговой сварки выступает сварка водородная. Технология основана на распаде воды до двух составляющих - водорода и кислорода. В чем специфика работы? Чем водородная сварка отличается от дуговой, а чем на нее похожа? Какое оборудование используется для работы? В данном материале вы найдете ответы на эти и другие вопросы.

    Данная технология относится к категории безвредных, поскольку в процессе горения дуги задействован один химический элемент - водород (точнее, водяной пар). Однако за этим преимуществом кроется пара недостатков технологии. Например, поверх заготовки может образоваться слой шлака, либо сварочный шов будет тонким. Чтобы его усилить, применяют связывающие кислород органические соединения вроде толуола, бензина или бензола. Их понадобится малое количество, поэтому водородная сварка обойдется сварщику дешевле, чем другой тип газопламенной обработки.

    Дуга при сварке горит в атмосфере водорода между двух неплавящихся вольфрамовых электродов. Пламя горючего элемента незаметно при дневном свете, поэтому часто применяют специальные датчики. Крупные и тяжелые баллоны с газом не используются, поскольку за их эффективностью кроется опасность для здоровья работника. Зато возникает необходимость вместо емкостей применять аппараты, заполненные водой, в которых под действием электричества жидкость распадалась бы на водород и кислород.

    Решение было найдено - им стал электролизер. Это подвид сварочного аппарата, где вода распадается до двух составляющих, причем в оптимальной пропорции. Происходит диссоциация после проведения через дистиллят электрического тока. Ранние разработки удивляли громоздкостью - электролизеры могли сварить металлические листы толщиной до 6 мм, при этом весили более 300 кг. Позже создали передвижные модели, благодаря которым процесс соединения деталей стал эффективнее.

    Подвидом водородной сварки выступает атомно-водородная. Обычно применяется при соединении чугунных или стальных деталей, отличается повышенной экзотермией. Редко применяется на производстве, поскольку есть опасный фактор - повышенное напряжение.

    Преимущества сварки водородом

    Методика известна не так, как ручная или полуавтоматическая сварка, однако имеет ряд достоинств, с которыми сварщику нужно познакомиться. Среди них:

    • редкая перезарядка сварочного аппарата;
    • оперативный вход в рабочий режим (до 5 минут в зависимости от расхода газа и параметров атмосферы);
    • высокая мощность при малых габаритах оборудования;
    • экологическая чистота (в отличие от сварки ацетиленом, где выделяются токсичные пары азота, отравляющие организм);
    • сварочный аппарат относится к классу пожаробезопасного оборудования;
    • конструкция и принцип действия таковы, что препятствуют не только возгоранию установки, но и взрыву;
    • широкий спектр материалов для обработки (цветмет, чугун, сталь, стекло и даже керамика);
    • исключено окисление свариваемых участков;
    • доступность главного расходного элемента - воды;
    • для бесперебойной работы необходимы лишь источник тока и вода (желательно дистиллированная).

    Теперь - пара слов о составных элементах оборудования, используемого для водородной сварки.

    Составные элементы аппарата

    Традиционно основными элементами устройств для сварки водородом являются:

    • горелка;
    • шланг;
    • заправочное устройство;
    • запасное сопло;
    • охладитель-обогатитель.

    Горелка предназначена для подачи газа в область соединения заготовок. Температуру пламени можно регулировать в диапазоне 600-2600 градусов. Сварочный аппарат достаточно мощный, позволяет выполнять ручную и автоматическую сварку. Если пользователь имеет базовые навыки работы с газопламенным оборудованием, эксплуатация электролизеров для водородной сварки проблем не составит. Теперь рассмотрим обработку заготовок детальнее.

    Характеристика процесса

    При выборе водородной сварки как метода соединения деталей пользователь обнаружит, что последнее происходит намного быстрее, чем при той же аргонодуговой или ацетиленовой. Сначала под действием высоких температур диссоциируются (распадаются) молекулы воды на кислород и водород. Далее, одноатомный водород преобразуется в двухатомный, за счет чего выделяется дополнительная тепловая энергия, ускоряющая процесс соединения.

    Этот же водород расходуется на защиту зоны сварки, поэтому шов получается качественным - прочным и герметичным. Исключение составляет лишь медь и ее сплавы (за счет химических свойств материала).

    Выделяемое тепло позволяет сваривать даже вольфрам (самый тугоплавкий металл с температурой плавления 3422 градуса). Здесь водород вновь выполнит роль защитного газа, препятствуя загрязнению углеродом, азотом или кислородом. Дуга, образуемая горелкой, достаточно стабильна и не зависит от первичной обработки соединяемых изделий.

    Обзор оборудования

    Классический пример сварочного аппарата для водородной сварки - продукт отечественного производителя «Лига». Устройства работают от сети 220 В и в качестве «топлива» используют дистиллированную воду. Применение оборудования снижает себестоимость сварочного процесса в десятки раз по сравнению с использованием габаритных газовых баллонов.

    О принципе действия - коротко:

    • через дистиллят проходит электрический ток, превращая его в водород и кислород;
    • полученная смесь проходит через охладитель-обогатитель газа, где остается лишняя влага;
    • в этом же элементе электролизера к водороду добавляются пары летучих углеводородов (бензол, спирт и т.д.);
    • смесь поступает в газовую горелку;
    • для контроля мощности в конструкции предусмотрены регулятор тока и гаситель пламени.

    Компания «Лига» выпускает несколько модификаций электролизных установок, а именно:

    • 02 С;
    • 02 0;
    • 22 Д.

    Наиболее популярные в среде профессиональных сварщиков устройства - «Лига-02» и «Лига-22».

    Водородная сварка обладает рядом преимуществ, выгодно выделяющих ее на фоне дуговой, ручной и других типов сварки. Первое достоинство для пользователя - экологическая чистота используемых элементов и безопасность. По этой причине электролизной установкой целесообразно пользоваться при больших объемах работ, либо при сварке внутри компактных помещений.

    Известны ли вам нюансы работы с оборудованием и другие его особенности? Поделитесь своими навыками и знаниями в обсуждении к статье.

    Атомно-водородная сварка. Плавление металла происходит за счет тепла, выде­ляемого при превращении атомарного водорода в молекулярный водород, и за

    счет тепла независимой дуги, горящей между двумя вольфрамовыми электродами.

    Тепловой эффект от излучения дуги и от сго­рания молекулярного водорода в наружной зоне пламени незначителен по сравнению с эффектом рекомбинации атомов водорода.

    Температура атомно-водородного пламени со­ставляет ~ 3700° С, что по концентрации тепла приближает этот способ сварки к сварке в среде защитных газов. Водород при этом способе сварки передает тепло от дуги к изделию вначале за счет поглощения его при реакции диссоциации, а затем путем выделения при рекомбинации атомов водо­рода. Высокая активность водорода обеспечивает хорошую защиту металла шва от вредного воздей­ствия кислорода и азота воздуха.

    При атомно-водородной сварке дуга горит между двумя вольфрамовыми электродами, распо­ложенными под углом (рис. 112). В зону дуги можно подавать чистый водород или азотно-водородные смеси, получаемые при диссоциации аммиака. Питание дуги осуществляется от источников пере­менного тока. Из-за высокого охлаждающего дей­ствия реакции диссоциации водорода и высокого потенциала ионизации водорода напряжение источника питания дуги, требуемое для ее зажигания, должно быть 250-300 В. Напряжение горения дуги 60-120 В. Сила тока дуги. 10-80 А.

    Широкий диапазон изменения напряжения горения дуги мало сказывается на величине изменения силы тока. Напряжение горения дуги зависит от расхода водорода и расстояния между вольфрамовыми электродами.

    Зажигание дуги осуществляется коротким замыканием вольфрамовых элек­тродов, обдуваемых водородом, или, лучше, замыканием электродов на угольную (или графитовую) пластинку при обдувании струей газа, так как в этом случае обеспечивается легкое зажигание дуги и не требуется повышенного напряжения холостого хода источника питания. После зажигания дуги расстояние от концов электродов до поверхности изделия устанавливают в пределах 4-10 мм. Это зависит от мощности атомно-водородного пламени и толщины свариваемого ме­талла.

    Дуга может быть спокойной (рис. 113, а), когда нет в дуге характерного веера, и звенящей (рис. 113, б), когда веер пламени касается поверхности свариваемого изделия и дуга издает резкий звук. Для спокойной дуги напря­жение не превышает 20-50 В и расход водорода 500-800 л/ч, для звенящей дуги - 60-120 В и 900-

    1800 л/ч соответственно.

    При атомно-водородной сварке выполняют следующие виды свар­ных соединений: стыковые с отбор­товкой и без отбортовки кромок, угловые, тавровые и нахлесточные.

    Высоту отбортовки принимаютчрав — ной двойной толщине свариваемого листа. Угловые соединения выпол­няют с применением присадочной проволоки или без нее. При сварке толщин более 3 мм на стыковых и тавровых соединениях рекомендуется выполнять скос кромок под углом 45°.

    Обычно атомно-водородную сварку рекомендуется применять для сварки металлов и сплавов толщиной 0,5^5-10 мм. Этим способом хорошо свариваются малоуглеродистая и легированная сталь, чугун, алюминиевые, магниевые сплавы. Хуже свариваются медь, латунь из-за склонности к насыщению водородом и испа­рению цинка. При сварке алюминия и сплавов на его основе необходимо при­менить флюсы, состоящие из солей щелочных металлов. Металлы с высокой хи­мической активностью к водороду, например Ті, Zr, Та и др., нецелесообразно сваривать атомно-водородной сваркой.

    Атомно-водородная сварка обеспечивает получение сварных соединений со свойствами, близкими к свойствам основного металла.

    Техника выполнения швов при атомно-водородной сварке подобна технике газовой сварки, т. е. может быть осуществлена как правым, так и левым методами.

    Атомно-водородную сварку можно осуществлять в нижнем и вертикальном положениях, по режимам приведенным в табл. 28.

    Установка для атомно-водородной сварки (рис. 114) состоит из атомно-водо­родного аппарата, баллона с водородом, водородного редуктора, горелки и пуско­регулирующей аппаратуры. При горении дуги в смеси водорода и азота в состав установки (рис. 115) входит еще баллон с аммиаком, крекер для получения азотно­водородной смеси из аммиака, аммиачный вентиль, водоотделитель и осушитель для газа. Водород с воздухом образует взрывные смеси, поэтому все соединения

    трубопроводов, вентилей, шлангов должны быть надежными, а помещения, где производится работа, хорошо вентилируемые.

    При соединении водорода с углеродом в условиях сварочной дуги происхо­дит обезуглероживание металла. Поэтому в производственных условиях вместо чистого водорода применяют смеси водорода с азотом. Для расщепления аммиака на водород и азот используют аппараты-крекеры (см. рис. 115, а), в которых расщепление происходит при 600 °С в присутствии катализатора - железной стружки. Из крекера смесь газов поступает в очиститель (см. рис. 115, б) и далее в осушитель, где азотно-водородная смесь, пройдя слой хлористого кальция, поступает по резиновому шлангу в сварочную горелку.

    Известны аппараты для атомно-водородной сварки типа ГЭ-1-2, ГЭ-2-2, АВ-40, АГЭС-75, техническая характеристика которых приведена в табл. 29.

    Атомно-водородная сварка широко применялась в самолетостроении, хими­ческом машиностроении и других отраслях промышленности. В настоящее время из-за значительного прогресса других способов сварки атомно-водородная сварка применяется редко.

    Термитная сварка. Источником тепла являются порошкообразные смеси металлов с окислами других металлов - термиты, при сгорании которых проис­ходит обменная реакция по кислороду с выделением значительного количества тепла (экзотермическая реакция). Источником кислорода в термите является

    I - корпус; 2 - сосуд, питающий пост азотно-водородной смесью; 3 - нагреватель; 4 - труба с катализатором; 5 - катализатор; 6 - электродвигатель;

    I - баллон с аммиаком; II - крекер; III - водоотделитель; IV - азотно-водородный аппарат окисел, а источником тепла (горючим) - металл, входящий в смесь в чистом виде. Необходимым условием для получения теплового эффекта является то, что количество тепла, выделяющегося при сгорании горючего, должно быть больше, чем требуется для разложения окисла. В качестве окислов в термитных смесях используют железную окалину, а в качестве горючих металлов - алюминий, магний. Кроме того, в термит можно вводить легирующие элементы для улучше­ния механических свойств термитного металла и металлический наполнитель - железную обсечку - для увеличения выхода жидких продуктов термитной реакции (стали).

    Воспламенение термитной смеси происходит при температуре не ниже 1350° С. Для этих целей применяют термитные спички, которые имеют в головке магниевый термит, развивающий температуру при горении > 1500Q С, и другие переходные составы на основе магниевых порошков, бертолетовой соли, пере­киси бария, а также электрозапальные устройства.

    Наибольшее распространение для сварки получили алюминиевые термиты, содержащие 20-25% алюминиевого порошка и 75-80% окалины. Физико­химические параметры термитного процесса приведены в табл. 30,

    16 п/р, Ольшанского, т. 1

    Термохимические реакции при сгорании термита выражаются следующим образом:

    2Al-f-Fe203 = Al203-}-2Fe-f-179,5 кк ал/моль;

    2А1 — f-3Fe0==Al203+3Fe4-185,1 ккал/моль.

    При сварке стремятся применять термит с наибольшим тепловым эффектом реакции. Это резко сокращает потребность в термите.

    Получению максимального теплового эффекта способствуют следующие факторы: высокая химическая чистота компонентов термита; подготовка окисли­теля с содержанием кислорода, по хими­ческому составу близкого к Fe203; пра­вильный выбор соотношения основных компонентов - алюминиевого порошка и железной окалины и весового количества

    металлического наполнителя. Наличие в восстановителе примесей Си, Si, Mg, Zn, а в окислителе Mn, Si, S, Р, Сг и др. резко снижает тепловой эффект термитной реакции из-за протекания побочных реакций с меньшей теплотворной способ­ностью. Повышение содержания кислорода в окалине достигается за счет ее об­жига при 900° С в окислительной среде и за счет ее более тонкого измельчения. Наиболее благоприятными по содержанию кислорода являются частички желез­ной окалины размерами 0,25-0,4 мм. Для получения соединения А1203 в про­цессе протекания реакций необходимо постоянное соотношение алюминие­вого порошка и окисла, определяемое коэффициентом стехиометричности со-

    става термита Z (рис. 116), который для сварочных процессов имеет значения Z = 0,964 ч — 1,020.

    Введение металлического наполнителя в количестве 10-15% массы основных компонентов термита (рис. 117) изменяет температуру процесса за счет потребле­ния части тепла на плавление наполнителя. На параметры теплового процесса термитной реакции оказывают влияние также перемешивание и уплотнение компонентов термита (табл. 31).

    Для изготовления сварочного термита используют алюминиевый порошок, содержащий 96,5-99,7% А1; 0,47% Fe; 0,36% Si и ~1% А1203. Железная ока­лина, используемая в термите, является сложным химическим соединением, состоящим из нескольких окислов: от окиси железа Fe203 плотностью 5,1 г/см3 и температурой плавления 1565° С до закиси железа FeO плотностью 5,7 г/см3 и температурой плавления 1420° С. Железная окалина является в основном продуктом отходов горячей обработки стали; она прочно удерживает влагу до 550-600° С.

    Стальной наполнитель (гвоздевая обсеч — ка) имеет насыпной вес 1,8-2,2 г/см3; кри­сталлизационная влага и органические вклю­чения устраняются прокаливанием при тем­пературе >600° С. Плотность уплотненного (спрессованного) термита может достигать 3,2-3,4 г/см3. Термит воспламеняется при 1300-1360°С. Теплота реакции для стехиомет­рических составов термита 575-850 ккал/кг.

    Шлаковая составляющая термитного рас­плава имеет температуру кристаллизации >1950° С. Термитный металл в сварочной форме распределяется так, %: 72-80 на облив свариваемых деталей, 20-28 на лит- никово-выпорную систему. При термитном процессе возможно легирование ме­талла, которое можно осуществлять через восстановитель, окислитель, металли­ческий наполнитель, ферросплавы, легирующие окислы, введением легирующих элементов в чистом виде. Легирующие элементы, чаще всего в виде ферроспла­вов FeMn и FeSi, вводятся в термит обособленно в отдельных порциях или перемешиваются с шихтой.

    На рис. 118 приведено изменение содержания алюминия в термитном ме­талле за время протекания термитного процесса 23 с. За время реакции проис­ходит также изменение в химическом составе металла по содержанию углерода, кремния, марганца. Общим свойством термитного металла является присутствие в его составе алюминия. Пониженное количество алюминия означает присутствие
    в термитном металле кислорода, который снижает механические свойства термит­ной стали. Содержание в стали до 0,25-0,40% А1 не влияет на механические свойства термитного металла, а содержание А1 свыше этих величин понижает его прочность.

    Термитный металл, полученный при реакции основных компонентов термита, имеет химический состав, %: 0,1 С; 0,08 Мп; >0,09 Si; 0,03 S; 0,03 Р; 0,09 Си; 0,07 А1 и невысокую прочность (ов = 35 — г 40 кгс/мм2, б = 18 — s — 20%). Поэтому при сварке стали необходимо подбирать по составу такой термитный металл, механические свойства которого не отличались бы от свойств свариваемой стали.

    При введении легирующих элементов в термит необходимо учитывать их переход в термитный металл; количество легирующих элементов определяется в процентном отношении от основных компонентов термита (табл. 32).

    Потери элементов на угар составляют, %: ЗО С; 20 Si; 80 Мп. Изменяя коли­чество вводимых легирующих элементов, можно в широких пределах изменять химический состав и механические свойства термитного металла, так предел проч­ности можно изменять в пределах 40-75 кгс/мм2.

    Оптимальные значения измельчения компонентові используемых в сварочном термите, составляют, мм: 0,1-1,0 алюминиевого порошка; 0,05-1,0 железной окалины; 1,0 стального наполнителя; 0,25-0,63 легирующих компонентов.

    Компоненты термита взвешивают с точностью ±0,2%, а наполнитель с точ­ностью ±0,5%. Низкокалорийный термит развешивается на порции по 6 и 7,5 кг, высококалорийный - на порции 2,5-3,5 кг; 4-4,7 кг; 5,1-5,5 кг и 6,5 кг. Тигель для сжигания термита показан на рис. 119. В пакет с термитом уклады­вается запорное устройство (рис. 119, б). В зависимости от размеров свариваемого изделия вес термитной порции может меняться от нескольких сотен граммов до нескольких килограммов. Сгорание термита происходит в тигле (рис. 119, а). Тигель имеет корпус из листовой стали с внутренней магнезитовой футеровкой, огнеупорную втулку (штепсель) и крышку.

    Для удержания жидкого металла в месте сварки применяют сварочные разъем­ные формы, которые могут быть сырые и сухие. Сырые формы изготовляют на месте работ и предварительно перед сваркой их просушивают. Для изготовления сырых

    форм используют кварцевый песок (80-85%) и глину (15-20%). Сухие формы изготовляют из кварцевого песка (92-93%) и жидкого натриевого стекла (8-7%), Литниковую систему выполняют с учетом способа подготовки стыка под сварку, разъема сварочных форм, системы газа и шлакоудаления, зазора в стыке.

    Существует несколько способов термитной сварки, которые отличаются тех­нологией процесса и применяемым оборудованием (рис. 120). При использовании термитной сварки давлением торцы свариваемых деталей (рельсов) шлифуют и плотно прижимают один к другому, затем стык зачеканивают по всему периметру. На стык устанавливают формы (рис. 120, а) и через край тигля сливают вначале шлак, а затем термитный металл. Температура стыка в начале процесса равна температуре окружающей среды, поэтому жидкий шлак быстро теряет тепло и, застывая, покрывает стык коркой толщиной до 4 мм. Выливаемый затем термит­ный металл вытесняет оставшийся жидкий шлак в верхнюю часть формы. Затвер­девшая ранее шлаковая корка не допускает приварки термитного металла к основ­ному металлу, однако через нее перегретый термитный металл за 3-4 мин нагре­вает стык до 1400-1450° С. После нагрева производят осадку стыка сжимным прессом, затем сбивают формы и удаляют металлический облив. При этом способе сварки наблюдается значительный рост зерна, что требует применения после­дующей термической обработки. Механические свойства сварного соединения получаются низкими. Способ термитной сварки давлением для рельсов в настоя­щее время почти не применяют. Наиболее распространена сварка способом про­межуточного литья (рис. 120, б). При этом способе торцы рельсов сближают и устанавливают с зазором 12-14 мм, стыку придают конструктивный изгиб на 1,5-2 мм и устанавливают две половинки сварочной формы. На головку рельса устанавливают вкладыш. Закрепленные формы и вкладыши промазывают огне­упорной глиной. В отверстие наружной половинки формы вставляют горелку для предварительного нагрева концов рельсов до 850-900° С. Время нагрева составляет 15-30 мин в зависимости от мощности горелки и типа рельсов.

    Термитный металл, расплавленный в тигле за 18-20 с, после выдержки 4-6 с выпускают в форму. Расплавленный перегретый металл оплавляет основ­ной металл у стыка и образует с ним сварное соединение. Через 10-15 мин после выпуска металла формы можно снять. Этот способ также не лишен недостатков: повышенный расход термита, образование литой структуры с дефектами и значи­тельный облив сечения стыка термитным металлом.

    При комбинированном способе (рис. 120, в) головки рельсов со вставленной между ними пластиной из малоуглеродистой стали сваривают способом давления, а шейку и подошву рельсов, между которыми имеется зазор, сваривают способом промежуточного литья.

    При качественном выполнении технологических операций этим способом сварки прочность стыка может достигать 80 кгс/мм2. Этот способ сварки можно применять при строительстве новых линий и капитальном ремонте, но вследствие громоздкости оснастки и сложности технологии он требует тщательного подхода.

    В электромонтажном производстве применяют термитно-тигельную и тер­митно-муфельную сварку (рис. 121).

    Термитно-тигельная сварка (рис. 121, а) может быть использована для соединения стальных стержней и полос при выполнении заземляющих устройств в местах, где отсутствует электроэнергия, например при строительстве высоко­вольтных линий. Разработаны оборудование и технология для сварки стержней диаметром 12-16 мм и полос сечением 40 х 4 мм.

    Термитно-муфельную сварку применяют для соединения проводов линий связи и электропередачи. При этом используют магниевый термит (25% магния и 75% окиси-закиси железа), который прессуют со связующим веществом в ци­линдрические муфели (рис. 121, б, в, г).

    Сварку проводов линий связи диаметром до 6 мм производят с использова­нием полых цилиндрических муфелей. Концы стальных проводов, введенные в муфель, при горении термита разогреваются, частично оплавляются и свари­ваются при сдавливании специальными клещами (см. рис. 121, б). Для соедине­ния неизолированных сталеалюминиевых и медных проводов воздушных электро­линий используют способ термитно-муфельной сварки, когда концы проводов расплавляют в формочке, заключенной в муфель, и затем сдавливают при помощи специального приспособления (см. рис. 121, в). Термитно-муфельную сварку ка-

    белей и изолированных проводов с алюминиевыми жилами производят без дав­ления с введением присадочного металла в формочку через специальное отвер­стие (см. рис. 121, г).Разновидностью последнего способа является сварка по тор­цам двух или нескольких алюминиевых изолированных проводов (см. рис. 121, д).

    а - термитно-тигельная сварка; б - термитно-муфельная сварка; в - термитно-муфель­ная сварка с осадкой проводов; г - термитно-муфельная сварка с присадкой; д - тер­митно-муфельная сварка по торцам; / - тигель; 2 - термит; 3 - литниковое отверстие; 4 - форма; 5 - стальные стержни; б - термитный металл; 7 - шлак; 8 - сварочное соединение; 9 - термитный муфель (шашка); 10 - провода; 11 - клещи; 12 - тер­митный муфель; 13 - алюминиевый вкладыш; 14 - кокиль; 15 - сталеалюмиииевые провода; 16 - алюминиевый колпачок; 17 - асбестовое уплотнение; 18 - провода алюминиевыми жилами; 19 - литниковое отверстие; 20 - присадочный пруток

    Наибольшее применение термитная сварка нашла в городском хозяйстве при строительстве и ремонте рельсовых трамвайных путей, меньше - железно­дорожных путей и железобетонной арматуры в строительстве. Термитную сварку можно применять при ремонте литых стальных и чугунных деталей. Для сварки чугуна используют термит с высоким содержанием кремния (2,5-3,5%), кото­рый необходим для предотвращения отбеливания чугуна. Ведутся работы по тер­митной наплавке изношенных поверхностей.

    Водородная сварка представляет собой разновидность газопламенной обработки. Ее отличительной особенностью является горение пламени в атмосфере водорода. На сегодняшний день среди всех видов газопламенных обработок наибольшей популярностью пользуется именно такой метод.

    Он обладает высокой эффективностью и служит отличной альтернативой ацетиленовой сварке. Кроме того, изготовить сварочный аппарат можно своими руками в домашних условиях, что делает его еще более интересным.

    Водородная сварка обладает рядом преимуществ по сравнению с другими аналогами. Главным ее достоинством является то, что в процессе горения сварочной горелки выделяется водяной пар, поэтому она является самой безопасной.

    Кроме того, данная технология обеспечивает высокие рабочие температуры, а значит позволяет работать с более тугоплавкими металлами. Водородную сварку можно легко использовать в домашних условиях, так как изготовить сварочный аппарат своими руками может любой желающий.

    Еще одним наиболее часто используемым методом является ацетиленовая сварка.

    Технология сварки при помощи водорода.

    В то же время водородная во многих случаях оказывается более предпочтительной благодаря своим особенностям:

    • позволяет получать аккуратные плотные швы;
    • возможность работы с мелкими деталями;
    • высокая температура газовой горелки позволяет осуществлять не только , но и резку материалов;
    • водородная горелка своими руками – это посильная задача не только для мастеров, но и для новичков;
    • возможность выполнения работ в замкнутом пространстве;
    • водородный сварочный аппарат является малогабаритным и его удобно транспортировать.

    Несмотря на многочисленные достоинства атомно-водородной сварки, она не лишена недостатков. Главные из них – это трудности работы с медными изделиями, некоторыми легированными сталями, а также с массивными материалами.

    Применение метода

    Газопламенная сварка осуществляется за счет горения газообразной смеси. Самой часто используемой является ацетиленовая сварка. Она основана на окислении карбида в воде.

    Если необходима небольшая температура, например, для работы с мелкими деталями или тонким металлом, используется пропан. Он подается из баллона в смесительную камеру, а затем в горелку.

    В эту же камеру подается кислород, поддерживающий горение газа. Регулируя давление кислорода можно достичь температуры горения до 3000 градусов, что позволяет осуществлять не только сварку, но и резку металла.

    Недостатком этой является необходимость использование баллона с газом. Это накладывает ограничения на применение сварки во многих сложных условиях.

    Агрегат для водородной сварки.

    Принцип работы водородной сварки основан на процессе разделения воды на водород и кислород. В результате последующей рекомбинации одноатомного водорода в двухатомный происходит высвобождение энергии, ускоряющей сварку.

    Область сварки оказывается защищенной водородом от кислорода, что исключает окисление поверхности и обеспечивает гладкие швы.

    Использовать водородные баллоны для сплава опасно. Его утечка в замкнутых помещениях может привести к удушью или головокружению. Также он является взрывоопасным.

    Производство водорода, необходимого для работы сварочного аппарата, осуществляется непосредственно на месте проведения сварочных работ в электролизной камере. Это исключает указанные риски при правильном использовании оборудования и соблюдении техники безопасности.

    Водородная сварка широко применяется в сложных условиях: тоннелях, шахтах, коллекторах. Использовать в таких задачах пропилен-ацетиленовые баллоны невозможно из-за высокого риска утечки смеси и ее взрыва.

    Электролизное оборудование лишено этих недостатков и широко применяется в указанных областях.

    Использовать водородные сварочные аппараты достаточно просто. Они не требуют частой перезарядки и быстро выходят на рабочие температуры.

    Кроме того, они могут работать от бытовой сети, что делает их весьма привлекательными для простого пользователя. Особенно учитывая то, что водородная сварка может быть изготовлена своими руками по одной из многочисленных схем электролизера для сварки доступной в интернете.

    Как самому сделать водородный сварочный аппарат?

    Сварка водородом пригодится любому умельцу. Водородный резак является недешевым оборудованием. Кроме того, доступные в продаже аппараты зачастую оказываются непригодными для мелких деталей, особенно для ювелирных изделий.

    Выходом из этой ситуации является изготовление атомно-водородной сварки своими руками. Все детали, необходимые для создания такого прибора можно легко приобрести в любом хозяйственном магазине. Итак, давайте рассмотрим, как это сделать в домашних условиях.

    Основная емкость

    Установка для сварки при помощи водорода.

    Аппарат водородной сварки работает в результате горения водорода, благодаря диссоциации водного раствора щелочи.

    Этот процесс осуществляется в емкости, для которой отлично подойдет пол литровая банка. Ее необходимо закрыть пластмассовой крышкой с двумя отверстиями, проделанными для вывода контактов от электродов.

    Все выводы необходимо плотно загерметизировать. Для этих целей подойдет клей «Момент».

    В качестве можно использовать четырехсантиметровые полоски из нержавеющей стали. Для наибольшей производительности сварочного аппарата требуется задействовать весь объем жидкости.

    Для этого пластины просверливаются по верхнему и нижнему краю и соединяются между собой диэлектрическими шпильками. На получившемся блоке делаются клеммы: два минуса, расположенные по краям, и полюс между ними.

    Каждая клемма загибается и фиксируется на емкости болтом. На эти болты будут накидываться клеммы от источника питания.

    Емкость необходимо заполнить с помощью шприца рабочей жидкостью через штуцер отвода газов. Электролит представляет собой 8-10% смесь гидроокиси натрия в дистиллированной воде. При работе электролизера температура рабочей жидкости щелочного раствора обычно не превышает 80 °С.

    Гидродозатором выступает второй сосуд. В нем газы насыщаются парами горючих веществ. Затем полученная смесь направляется в третью емкость, наполненную обычной водой. Она выполняет функцию затвора для выхода газов.

    В качестве сопла, через которое буду выходить кислород, водород и горючие вещества, может быть использована обычная медицинская игла.

    Источник тока для атомно-водородной сварки

    В качестве источника тока может использоваться обычный аккумулятор на 12 вольт. Этот вариант отлично подойдет для работы с металлом фиксированной толщины.

    Его недостатком является отсутствие возможности контроля силы пламени , так как ее производительность определяется выработкой водорода и кислорода, зависящей от силы тока.

    Выбор зарядного устройства для автомобильных аккумуляторов будет более предпочтительным. Для работы с тонкими металлическими пластинами или ювелирными изделиями зарядку можно настроить на 3 вольта.

    Запитать кислородом водородную сварку можно от обычной сети в 220 В, что позволяет использовать данный аппарат в домашних условиях.

    Обменная камера

    Принципиальная схема аппарата водородной сварки.

    Для отбора водорода и кислорода, подаваемого в горелку, используется еще одна емкость – обменная камера.

    Внутри нее необходимо проделать 3 отверстия:

    • для заправки рабочей жидкостью;
    • снизу штуцер для подачи рабочей жидкости в основную емкость;
    • штуцер для подачи газовой смеси на сопло.

    Конструкцию дополнительной емкости также необходимо тщательно загерметизировать. Через водородные затворы водородного генератора не должны просачиваться газы и жидкость. Это также решается с помощью «Момента».

    Изготовление горелки

    Для изготовления горелки можно использовать обычный резиновый шланг. Именно по нему водород и кислород будут транспортироваться от обменной камеры к соплу. В качестве сопла можно применить иглу от шприца или капельницы. Последняя будет более предпочтительным выбором, так как стенки этой иглы толще.

    Шланг необходимо плотно закрепить со штуцером обменной камеры и основанием иглы. Это достигается при помощи хомутов. После завершения всех операций по сборке аппарата можно приступать к его испытанию.

    Электролиз рабочей жидкости начинается быстро. Уже через несколько минут можно будет поджечь пламя на конце сопла. Регулировка пламени осуществляется изменением напряжения на аппарате.

    Итог

    Во многих случаях использование водородной сварки оказывается более удобным, чем других газопламенных методов. Особенно актуальной она становится, когда речь заходит про работу в домашних условиях.

    Приведенное описание того, как сделать водородную горелку своими руками, поможет всем мастерам, желающим изготовить такой прибор. Это существенно сэкономит средства на покупку магазинного варианта сварки.

    Кроме того изготовленный своими руками водородный резак является более перспективным для работы с мелкими изделиями. Водородная сварка является экологически чистой, а ее изготовление не требует большого труда и крупных затрат.

    Также метод аналогичен с ацетиленовой сваркой, и освоить его не составит труда.