• Что можно приготовить из кальмаров: быстро и вкусно

    Обработка материалов с плотной структурой ручным способом малоэффективна, так как требует больших трудозатрат и не обеспечивает высокой точности. Среди установок, которые позволяют в какой-то степени или полностью (зависит от вида и модели) автоматизировать процесс, электроэрозионные станки менее известны, хотя они и отличаются уникальными возможностями, что выгодно выделяет их среди большинства «собратьев» по станочному парку.

    Об особенностях, принципе работы и специфики применения электроэрозионных станков и будет рассказано в предлагаемом читателю материале.

    Общая информация

    • Независимо от модели, электроэрозионные станки имеют ограничение по обработке деталей. Они могут использоваться для выполнения различных операций лишь в том случае, если образец изготовлен из материалов категории «токопроводящие» (металлы, сплавы).
    • Существует несколько методик электроэрозионного воздействия на изделие, отличающихся как способом подачи электрических разрядов, так и параметрами импульсов. В соответствие с этим, все подобные станки позволяют изготавливать детали по-разному, в зависимости от ожидаемого результата.
    • Несомненный плюс электроэрозионных установок – возможность ведения обработки образца одновременно по разным направлениям.

    Что может получиться в результате, показано на схемах (наиболее распространенные варианты использования электроэрозионных станков).

    Способы обработки заготовок

    • эл/импульсный;
    • эл/искровой;
    • анодно-механический;
    • эл/контактный.

    Виды технологических операций

    1. Упрочнение структуры.
    2. Шлифовка.
    3. Маркирование.
    4. Вырезание.
    5. Доводка.
    6. «Прошивка».
    7. Отрезка.
    8. Объемное копирование.
    9. Обработка:
    • электроэрозионно-абразивная;
    • анодно-механическая;
    • электрохимическая;
    • комбинированная.

    Возможности электроэрозионного оборудования

    Спектр использования электроэрозионных станков действительно огромен. Из основных технологических операций можно выделить:

    • получение отверстий (глухих проемов, углублений) самой сложной конфигурации, при необходимости, с резьбой;
    • выборка материала на любую глубину с внутренних поверхностей образцов;
    • выполнение операций, которые невозможно или экономически нецелесообразно проводить на других типах станков ( , токарных);
    • изготовление деталей из материалов, трудно поддающихся обработке традиционными инструментами (например, титан и сплавы на его основе).

    Принцип работы станков электроэрозионного типа

    Несмотря на разницу в конструктивном исполнении оборудования и реализуемых способах электроэрозионной обработки, принцип функционирования остается одинаковым.

    Условно процесс можно разделить на два технологических этапа.

    Первый. Под воздействием импульсных разрядов, поступающих «по плазменному каналу» (10), разрушается структура образца (2) на данном участке. Они появляются в определенный момент при сближении электрода (4), являющимся рабочим инструментом станка, с деталью. Электрическая энергия преобразуется в тепловую, и как результат – расплавление металла (сплава) на требуемом по ТУ участке.

    Второй. Так как и деталь, и электрод погружены в емкость со спец/составом (чаще всего это масло), металл частично испаряется от высокой температуры, а остатки расплава удаляются из рабочей зоны.

    В зависимости от реализуемого способа обработки и инженерного решения в конструкции станка, параметры импульсов, технология их генерирования и ряд других факторов в различных моделях электроэрозионных установок могут отличаться. Но принцип работы оборудования остается прежним.

    Приложенное напряжение «пробивает» зазор между электродом и «болванкой», в результате чего возникает так называемый «плазменный канал», характеризующийся высокой температурой. У основания этого «столба» появляется расплав металла, который удаляется из рабочей зоны.

    В принципе, такую «чудо-машину», как электроэрозионный станок, можно изготовить самостоятельно. Но кажущаяся простота сборки обманчива. Прежде чем приниматься за работу, следует оценить свои силы. Главная сложность, с которой столкнется «домашний умелец» – монтаж (а перед этим точный расчет параметров) искрового генератора. Кроме того, эксплуатация данного станка требует особой осторожности, так как емкость с маслом в любой момент может воспламениться. Автор не ставит целью отговорить читателя от самостоятельного изготовления бытового электроэрозионного станка, но обратить внимание на ряд моментов просто обязан.

    Самодельный электроэрозионный станок целесообразно собирать в том случае, если высокоточные работы с металлом выполняются часто и в относительно больших объемах. Это сложное в изготовлении оборудование, которое редко используется в быту. Он оправдан в металлообрабатывающих цехах и мастерских в качестве финишного инструмента обработки заготовок после фрезерного или токарного станков или изготовления мелких деталей сложной конфигурации.

    Принцип работы электроэрозионного станка требует изготовления как электронной схемы, генерирующей импульсный ток высокой силы, так и сложной механической части, обеспечивающей движение электрода (проволочного или штучного). Основная сложность - сделать генератор, который может за короткое время накопить достаточный для пробоя заряд, выбросить его за доли секунды и за столь же короткий промежуток восстановить его. При недостаточной плотности тока электроэрозионная обработка невозможна даже на тонких деталях из мягких металлов.

    Основные части самодельного проволочного электроэрозионного станка:

    · станина - чугун или сталь;

    · рабочий стол - прочный пластик или нержавейка;

    · ванна для диэлектрика, служащая рабочей зоной;

    · система подачи проволоки (две катушки, электродвигатель, привод, направляющие);

    · система управления электродом (для прошивочных);

    · система запуска и остановки;

    · блок прокачки диэлектрика - насос, фильтры, трубопроводы;

    · генератор;

    · система управления.

    Последний пункт - один из самых сложных, необходимо синхронизировать подачу проволоки по скорости и направлению, частоту импульса и подачу диэлектрической жидкости. Следует учесть, что в процессе работы жидкость ионизируется, и свойства ее значительно изменяются.

    Преимущества электроэрозионной обработки

    Такие работы должны осуществляться только на специальном оборудовании под обязательным присмотром квалифицированного специалиста, имеющего соответствующий допуск . Хотя такой способ делает заготовку более точной и качественной, промышленные предприятия предпочитают применять механическую обработку металла.

    Поэтому необходимо отметить основные достоинства электроэрозионного воздействия на разнообразные виды заготовок.

    Используя такой метод, практически всегда удается добиться самого высокого качества поверхности металла, в результате чего она становится максимально точной и однородной . При этом полностью исключается необходимость проведения финишной обработки. Также этот метод гарантирует получение на выходе поверхности разнообразной структуры.



    Также к достоинствам электроэрозионной обработки металла относят возможность осуществлять работу с поверхностью любой твердости и отсутствие шума при работе на специальном оборудовании.

    Электроэрозионное воздействие полностью исключает возникновение деформации поверхности у деталей, имеющих небольшую толщину. Это возможно из-за того, что при таком методе не возникает никакой механической нагрузки , а рабочий анод имеет минимальный износ. Кроме того, электроэрозионная обработка способствует получению поверхности разнообразных геометрических форм и конфигураций при минимальных усилиях.

    Недостатки электоэрозионной обработки

    Есть определенные недостатки, которые определяют отсутствие возможности повсеместного использования электроэрозионной обработки. К основным недостаткам можно отнести:

    1. Невысокая производительность. Для изменения формы или размеров, качества поверхности требуется довольно продолжительное воздействие электрического разряда. Большая часть оборудования имеет следующий показатель производительности: 10 миллиметров за одну минуту.

    2. Высокое энергопотребление определяет то, что стоимость получения деталей очень высока. Электричество – самый дорогой источник энергии, который используется во многих сферах промышленности.

    3. Сложность процесса определяет то, что управлять оборудованием может исключительно профессионал.

    4. Есть определенные требования к тому, где устанавливается техника. Стоит учитывать то, что технология предусматривает подачу тока с высокой силой тока и напряжением.

    Простая электроискровая установка (рис. 1) позволяет легко и быстро обрабатывать небольшие детали из электропроводящих материалов любой твердости. С ее помощью можно получать сквозные отверстия любой формы, извлекать сломавшийся резьбовой инструмент, прорезать тонкие щели, гравировать, затачивать инструмент и мн.др.

    Сущность процесса электроискровой обработки заключается в разрушении материала заготовки под действием импульсного электрического разряда. Благодаря малой площади рабочей поверхности инструмента в месте разряда выделяется большое количество тепла, которое расплавляет вещество обрабатываемой детали. Процесс обработки наиболее эффективно идет в жидкости (например, в керосине), омывающей место контакта вибрирующего инструмента и детали и уносящей с собой продукты эрозии. Инструментом служат латунные стержни (электроды), повторяющие форму предполагаемого отверстия.

    Рис. 1. Малогабаритная электроискровая установка:
    1 — обрабатываемая деталь; 2 — инструмент; 3 — электромагнитный вибратор; 4 — зажимное устройство; 5 — ванночка.

    Принципиальная электрическая схема установки изображена на рис. 2. Работает установка следующим образом. Разрядный конденсатор С1 соединен своим плюсовым выводом с обрабатываемой деталью 1. Минус его подключен к инструменту 2. Электромагнитный вибратор 3 сообщает инструменту непрерывные колебания. Этим обеспечивается постоянное искрение в месте контакта и предотвращается возможность сварки инструмента с деталью. Обрабатываемая деталь 1 закреплена в зажимном устройстве 4, которое имеет надежный электрический контакт с ванночкой 5.

    Силовой трансформатор собран на сердечнике Ш32 из обычной трансформаторной стали. Толщина набора 40 мм. Первичная обмотка содержит 1100 витков провода ПЭВ 0,41 с отводом от 650-го витка. Вторичная обмотка имеет 200 витков провода ПЭВ-2 диаметром 1,25 мм. Между первичной и вторичной обмотками помещена экранирующая обмотка III , состоящая из одного слоя, намотанного проводом ПЭВ 0,18. Емкость разрядного конденсатора 400 мкФ (два конденсатора типа КЭ-2 200 х 50 В). Реостат R1 рассчитан на ток 3—5 А. Этот реостат намотан нихромовым проводом диаметром 0,5—0,6 мм на сопротивлении ВС-2.

    Рис. 2. Принципиальная электрическая схема электроискровой установки.

    Диоды Д1—Д4 типа Д304, можно использовать и другие типы диодов. На выходе выпрямителя напряжение порядка 24—30 В. Можно использовать источники питания и с более низким напряжением, но с большим током, чтобы мощность, потребляемая цепью заряда, была не менее 50—60 Вт.

    При работе установки происходит непрерывное искрение. Для уменьшения помех, создаваемых установкой, в цепь ее питания необходимо включить простейший фильтр радиопомех.

    Для изготовления нестандартного оборудования или изделий на производстве (на заводе, на фабрике, в промышленной мастерской) обычно долго не думают и если не могут что-то изготовить сами и своими силами, то заказывают это оборудование или изделия на стороне, не считаясь с затратами. Мастеру-умельцу такой вариант приобретения нестандартного изделия не всегда приемлем.
    Так что же делать?
    Не унывать и вспомнить, что любая техническая задача имеет множество вариантов решения и надо всего-то лишь найти наиболее приемлемый вариант решения подходящий для применения в Вашем конкретном случае.
    Пример: Вам нужно изготовить пару изделий, размером со среднего размера тазик, из листовой стали.
    Ради изготовления двух, трех деталей, которые вполне возможно, впоследствии будут нуждаться в кардинальной переделке или даже в новом исполнении, аренда пресса и изготовление штампа (с переделкой) для мастера-умельца могут оказаться дорогим удовольствием. Но отказываться от задуманного не стоит, тем более если умеете работать не только руками, но и головой. В середине прошлого века был открыт электрогидравлический эффект, искра в воде возбуждала гидравлический удар с помощью которого можно штамповать, на сравнительно простеньком оборудовании довольно большие и сложные изделия.
    Гидравлические удары для штамповки применять стали сравнительно давно. Во времена покорения американского дикого запада, кустари-умельцы штамповали кастрюльки, котелки и прочие изделия в примитивных штампах, стреляя в воду (штампа) из ружей или револьверов.
    Устройство штампа было следующим: К матрице крепилась листовая заготовка, так чтоб под листовую заготовку не попадала вода, затем все в сборе погружали в толстостенный чан с водой и стреляли. Гидравлические удары постепенно прижимали лист металла к внутренней поверхности матрицы. Воздух из полости матрицы стравливали через специальное отверстие. Потом для этих же целей вместо стрельбы стали взрывать мини заряды взрывчатки. Оборудование было компактным и простым, правда,немного"" опасным.
    Скажете примитивно? Зато просто. Кузова для сверхдлинных лимузинов до сих пор штампуют именно таким способом, с помощью воды и взрывчатки. Оказалось, что для изготовления таких кузовов делать специальный пресс слишком дорого даже для солидных фирм. С помощью примерно такого же оборудования рубят по размеру корабельную броню (толщина до 0,8 метра), мельчат руду и т.д. и т.п.
    В нашей любимой Стране-запретов мастеру одиночке никто не позволит производственные шалости с огнестрельным оружием и взрывчаткой, поэтому для исполнения задуманного в домашних условиях, электрогидравлический эффект был бы очень кстати. Не запрещено, поддается регулировке по мощности и сравнительно дешево. Матрицу несложно изготовить из обычного бетона с полимерным покрытием. Как видим эта задумка вполне реальна в итоге.
    Более подробно для интересующихся в книге: Юткин Л.А. ,Электрогидравлический эффект и его применение в промышленности.""
    Следующие примеры:
    Обработка металлов электрическими способами.
    Это электрохимический, электроэрозионный и электроконтактный способы размерной обработки любых по твердости металлов и металлических сплавов. Размерная и объемная отрезка и обработка, пробивка простых и сверхглубоких, профильных отверстий, полостей. Фрезерование, маркировка, заточка, шлифовка, полировка и пр. По отношению к привычным методам обработки (резанием) применяемый инструмент (для электро обработки) может быть более дешевым, самодельным и из недефицитных материалов, станки более просты, по сравнению с привычными, в изготовлении.
    Хорошо известен способ электрохимического растворения металла под действием электрического тока. Если два металлических электрода подсоединить к источнику постоянного тока и опустить электроды в раствор электролита, то плюсовой электрод (заготовка) начнет растворяться, а минусовой электрод (инструмент), в зависимости от применяемого электролита, останется неизменным или начнет покрываться слоем растворенного в электролите металла. В нашем случае приветствуется только растворение металла на заготовке, растворенный металл выпадает в осадок и неизменное состояние электрода-инструмента. Для этого в качестве электролита применяют 25 процентный раствор поваренной соли. Чем ближе находится электрод-инструмент к электроду-заготовке, тем точнее получается,отпечаток"" инструмента на заготовке. В реальности расстояние между электродом-инструментом до электрода-заготовки от сотых долей миллиметра и выше.
    Основные сложности это:
    удержать электрод-инструмент на одном и том же расстоянии от электрода-заготовки во время всего процесса обработки, растворение металла приводит к изменению площади растворения и прочим изменениям всевозможных параметров.
    удалить растворенный металл из зоны обработки и не допустить его осаждения на заготовке и инструменте. Обычно это делается подачей в рабочий зазор электролита под большим (до 20 атмосфер) давлением.
    Плюсы подобной обработки, это сравнительно дешевый и практически вечный инструмент, возможность обработки любых по твердости металлов с очень высокой точностью, без последующего изменения их свойств и закалки в частности.
    Более простой способ обработки металлов электроэрозионный. В сущности, это продолжение электрохимического способа. При сближении зазора между электродом-инструментом и электродом-заготовкой возникает искра пробоя. В месте возникновения искры на обоих электродах появляются лунки, но на заготовке лунка немного больше. Металл в данном случае не растворяется в электролите, а испаряется и затем конденсируется в виде крохотных металлических шариков в рабочей жидкости. Для электроэрозионной обработки применяют уже не токопроводящий электролит, а жидкие диэлектрики (или рабочие жидкости): машинное масло, керосин, десцилированая вода и пр. Жидкие диэлектрики препятствуют попаданию испарившегося металла электрода-заготовки осесть на электроде-инструменте. Таким образом, разрушается и инструмент, и заготовка, но заготовка в месте контакта разрушается больше и так после серии контактов в итоге происходит обработка заготовки.
    Износ (разрушение) инструмента до 30-80 процентов по отношению к разрушению на заготовке. Однако инструмент часто можно изготовить из жести или кусков недефицитной проволоки нужного диаметра, для фасонной отрезки и пробивки сложных и глубоких отверстий не только в обычном железе, но и для обработки других металлов, вплоть до сверхтвердых победитовых напаек. Пробивка сверхглубоких отверстий проводится с постоянным поворотом инструмента и подводом рабочей жидкости под небольшим давлением. Точность обработки сравнительно не высока, зато сам процес обработки достаточно прост.
    Станок для электроэрозионной обработки напоминает настольный сверлильный. Только инструмент крепится к соленоиду подключенному параллельно к электромагнитной катушке. Во время контакта электродов, происходит соприкосновение инструмента и заготовки, электроцепь замыкается, в катушке появляется ток, электромагнитная катушка поднимает соленоид и инструмент над заготовкой. Но в это время электроцепь обесточивается и соленоид (и инструмент) падает под собственной тяжестью вниз на заготовку и все повторяется. Повторяется автоматически до тех пор, пока есть условия для контакта инструмента и заготовки.
    Недостатки: Инструмент быстро теряет свою первоначальную форму, что приводит к большому искажению формы заготовки. Поэтому обработку иногда ведут в несколько приемов и разным инструментом, сначала в черновом варианте, затем в чистовом.
    Еще проще электро-контактный способ обработки металлов. В качестве рабочей жидкости применяют уже раствор жидкого стекла (силиката натрия или калия). Инструмент это металлический, вращающийся диск из толстой жести. Раствор жидкого стекла (более известный под названием клей канцелярский) образует на металле нерастворимую пленку, но микронеровности на металле-инструменте сдирают пленку на заготовке и тут же разряд электричества выравнивает выступ на инструменте и делает новое углубление на заготовке. И так непрерывно, в разных точках касания, пока диск-инструмент вращается и соприкасается с заготовкой. Раствор силиката натрия (калия) либо поливается в зону контакта, или и заготовка, и инструмент погружены в раствор. Электро-контактным способом можно резать и обрабатывать металл примерно также как болгаркой или на наждачном круге.
    Станки для электро-контактной обработки металлов самые простые по устройству и должны обеспечить вращение инструмента, и подвод больших токов инструментом в зону обработки. Износ инструмента значителен, но чистовую доводку проводят тем же инструментом, что и черновую.
    Электро-контактным способом шлифуют и полируют неровности на направляющих поверхностях металлообрабатывающих станках. В этом случае чугунную пластину (инструмент) и станину (заготовку) подключают к низковольтному источнику постоянного тока и поливая жидким стеклом (вручную натирают) шлифуют поверхность направляющих.
    Если Вы посчитаете, что какой-то из вышеописанных способов обработки металлов Вам подойдет, то конечно же моего описания будет недостаточно для серьезного изучения этой темы. Но в сущности станки достаточно просты, и все вышеописанное не так уж и сложно для применения в домашних условиях.

    Электроэрозионные станки работают по принципу воздействия электрическими зарядами на обрабатываемую поверхность детали находящейся в электропроводной среде.

    За счет этого возникает электрическая эрозия в заданном направлении, что позволяет получить конкретную форму или размеры детали.

    1 Принцип РАБОТЫ

    Электроэрозионная резка происходит во время возникновения импульса газового электрического разряда, который имеет направленное действие. Схема такова, что при этом происходит разрушение и удаление части материала в зоне воздействия.

    Под влиянием высокой температуры в области возникновения разрядов происходит плавление металла (латунная или медная проволока) с частичным его испарением. Для того чтобы получить необходимую температуру, схема использует генератор импульсов, позволяющий сконцентрировать большое количество энергии.

    Электродами, между которыми возникает разряд, являются сама деталь, с одной стороны, и инструмент — с другой. Пространство между ними заполняется рабочей жидкостью, которая постоянно подается при работе станка через подводящую трубку (латунная или медная), если обработка не происходит в специальной ванной.

    Электроэрозионные станки, в которых используются электрические разряды различных видов и способов их получения, могут производить несколько разновидностей электроэрозионной обработки металла:

    • электроискровая схема;
    • электроконтактная схема;
    • электроимпульсная схема;
    • анодно-механическая (комбинированная схема).

    В работе с различными материалами прошивочный электроэрозионный станок с ЧПУ имеет одно ограничение — у них должна быть хорошая электрическая проводимость. Если материал не обладает этим свойством, то прошивной станок работать не сможет.

    1.1 Процесс работы электроэрозионного станка (видео)


    2 Основные виды электроэрозионной обработки

    Электроэрозионный проволочно вырезной станок применяется при следующих видах электроэрозионной обработки деталей из металла:

    • прошивании;
    • объемном копировании;
    • вырезании/отрезании;
    • шлифовании;
    • доводке;
    • маркировании;
    • упрочнении.

    Возможна электроконтактная обработка при выполнении:

    • резки;
    • работы с телами вращения;
    • обработки внутренних полостей;
    • зубчатых поверхностей;
    • обработки плоских и конических поверхностей;
    • упрочнения.

    2.1 Станки фирмы Sodick

    Японская производственная компания Sodick Co LTD, которая начала свою деятельность в 1976 году, на сегодняшний день является мировым лидером по производству и продажам электроэрозионных станков.

    Представительства компании Sodick имеются в Азии, США, Европе и ее продукция пользуется заслуженной популярностью у промышленных предприятий, которые имеют дело с обработкой таких материалов как титан и инструментальная сталь.

    Sodick — единственный в мире производитель, который выпускает электроэрозионный прошивной станок с ЧПУ, имеющий линейные двигатели и рабочую зону сделанную из керамики. Специалисты компании Sodick разработали революционную электроискровую технологию зеркальной полировки обрабатываемого материала.

    Схема оборудования Sodick работает по принципу прямого воздействия тепловой энергии на обрабатываемую поверхность металла. При этом отсутствует какое-либо силовое воздействие на материал, что значительно повышает качество производимых работ.

    Изготовленные на электроэрозионных станках Sodick детали получают дополнительную прочность и устойчивость к обычной коррозии, так как в процессе работы над ними происходит изменение физических характеристик металла.

    2.2 Копировально-прошивочный станок 4л721ф1

    Прошивочный станок 4л721ф1 имеет адаптивное ЧПУ и используется при обработке отверстий и полостей в заготовках из металла трудно поддающегося обработке. С его помощью, также можно изготовить штампы, пресс-формы, фильеры и т.д.

    Установленные в прошивочный станок 4л721ф1 генератор импульсов ШГИ-80-440М2, высокоскоростной привод, устройство индикации в цифровом виде, быстросъемные приспособления, дают возможность значительно увеличить его производительность и качество обработки.

    Станок 4л721ф1 не требует наличия особо прочного фундамента в производственном помещении, так как устанавливается на виброустойчивые опоры.

    На станке 4л721ф1 возможна обработка деталей, которые имеют максимальные размеры по длине, ширине и высоте — 280×250х120 мм.

    2.3 Станки компании P&G (dk7732, dk7740, dk7725)

    Станки dk7732, dk7740, dk7725 предназначены для изготовления измерительных инструментов, инструментальной оснастки, деталей для машин и механизмов (шестерни, зубчатые колеса и т.д.).

    У проволочно-вырезных станков dk7732, dk7740, dk7725 имеется несколько особенностей:

    • при работе используется молибденовая проволока, что позволяет использовать ее многократно. Для работы станка в течение недели достаточно 200 метров;
    • станки оснащены удобным ЧПУ. Достаточно выполнить чертеж детали в программе CAD и загрузить его в ЧПУ станка при помощи съемного носителя;
    • у них высокая производительность — обработка до 160 кв. мм поверхности за минуту.

    2.4 Станок своими руками

    Самодельный электроэрозионный станок можно собрать при наличии искрового генератора. Это самый сложный элемент в конструкции инструмента, который создается своими руками. За короткий отрезок времени должна быть собрана электрическая энергия в достаточном количестве для ее мгновенного выброса.

    Многие комплектующие для электроэрозионного станка который планируется сделать своими руками можно найти в старом телевизоре. К примеру — конденсатор емкостью 1000 мкФ. Все необходимые детали размещаются в коробе сделанном из фторопласта, который должен быть полностью изолирован. Направляющую втулку электрода можно сделать из заземляющего штыря розетки европейского типа.

    Электродом является молибденовая проволока, которая по мере испарения продвигается с использованием винтового зажима. Втулка должна иметь отверстие для прохождения охлаждающей жидкости и одновременно рабочей среды по оси совпадающей с расположением электрода.

    К электроду необходимо подключить привод (пускатель который имеет катушку на 230 В). Прошивочный элемент регулируется по глубине отверстия величиной хода штока.

    При зарядке конденсаторов горит лампа, а шток пускателя находится внутри. Как только заряд конденсаторов выполнен, лампа гаснет, шток двигается вниз к обрабатываемой детали и при контакте с ней происходит искровой разряд. Воздействие на заготовку (деталь) происходит циклически, а частота циклов зависит от мощности осветительной лампы.

    Основные узлы, из которых состоит электроэрозионный станок сделанный своими руками:

    • электрод;
    • винт для крепления электрода;
    • зажим плюсового контакта;
    • направляющая втулка;
    • фторопластовый корпус;
    • выемка для притока рабочей жидкости (масла)%;
    • штатив.
    Элетроэрозионный станок схема

    Боле подробно ознакомиться с устройством и получить информацию о номиналах электрических компонентов можно на стр. 154 .

    2.5 Расходные материалы

    Для того чтобы качественно выполнять работы по изготовлению деталей из особо прочного металла, необходимы следующие расходные материалы для электроэрозионных станков:

    • латунная проволока для электроэрозионных станков (возможен вариант с цинковым покрытием), латунная проволока с диаметром 0,1, 0,2, 0,25 мм;
    • молибденовая проволока сечением 0,14 мм (поставляется катушками по 200м весом 32 кг);
    • латунная или медная трубка (электрод) сечением от 0,5 до 6 мм и длиной от 30 до 40 см. Латунная может иметь от одного до трех отверстий;
    • модульные трубки для подачи охлаждающей жидкости, которые изготавливаются из высококачественных полимеров.