• Что можно приготовить из кальмаров: быстро и вкусно

    Минеральные удобрения классифицируют по трем главным признакам: агрохимическому назначению, составу, свойствам и способам получения.

    По агрохимическому назначению удобрения разделяют на прямые, являющиеся источником питательных элементов для растений, и косвенные, служащие для мобилизации питательных веществ почвы путем улучшения ее физических, химических и биологических свойств. К косвенным удобрениям принадлежат, например, известковые удобрения, применяемые для нейтрализации кислых почв, структурообразующие удобрения, способствующие агрегированию почвенных частиц тяжелых и суглинистых почв и др.

    Прямые минеральные удобрения могут содержать один или несколько разных питательных элементов. По количеству питательных элементов удобрения подразделяются на простые (односторонние, одинарные) и комплексные.

    В простые удобрения входит только один из трех главных питательных элементов: азот, фосфор или калий. Соответственно, простые удобрения делят на азотные, фосфорные и калийные.

    Комплексные удобрения содержат два или три главных питательных элементов. По числу главных питательных элементов комплексные удобрения называются двойными (например, типа NP или PK) и тройными (NPK); последние называют также полными. Удобрения, содержащие значительные количества питательных элементов и мало балластных веществ, называются концентрированными.

    Комплексные удобрения, кроме того, разделяются на смешанные и сложные. Смешанными называются механические смеси удобрений, состоящие из разнородных частиц, получаемые простым тукосмешением. Если же удобрение, содержащее несколько питательных элементов, получается в результате химической реакции в заводской аппаратуре, оно называется сложным.

    Удобрения, предназначенные для питания растений элементами, стимулирующими рост растений и требующимися в весьма малых количествах, называются микроудобрениями, а содержащиеся в них питательные элементы – микроэлементами. Такие удобрения вносят в почву в количествах, измеряемых долями килограмма или килограммами на гектар. К ним относятся соли, содержащие бор, марганец, медь, цинк и другие элементы.

    По агрегатному состоянию удобрения разделяются на твердые и жидкие (например, аммиак, водные растворы и суспензии).

    2. Руководствуясь физико-химическими основами процессов получения простого и двойного суперфосфатов, обоснуйте выбор технологического режима. Приведите функциональные схемы производств.

    Сущность производства простого суперфосфата состоит в превращении природного фтор-апатита, нерастворимого в воде и почвенных растворах, в растворимые соединения, преимущественно в монокальцийфосфат Ca(H 2 PO 4) 2 . Процесс разложения может быть представлен следующим суммарным уравнением:

    Практически в процессе производства простого суперфосфата разложение протекает в две стадии. На первой стадии около 70% апатита реагирует с серной кислотой. При этом образуются фосфорная кислота и полугидрат сульфатакальция:

    Выкристаллизовавшиеся микрокристаллы сульфата кальция образуют структурную сетку, удерживающую большое количество жидкой фазы, и суперфосфатная масса затвердевает. Первая стадия процесса разложения начинается сразу после смешения реагентов и заканчивается в течение 20 – 40 мин в суперфосфатных камерах.

    После полного израсходования серной кислоты начинается вторая стадия разложения, в которой оставшийся апатит (30%) разлагается фосфорной кислотой:

    Основные процессы проходят на первых трех стадиях: смешение сырья, образование и затвердевания суперфосфатной пульпы, дозревания суперфосфата на складе.

    Простой гранулированный суперфосфат – дешевое фосфорное удобрение. Однако он имеет существенный недостаток – низкое содержание основного компонента (19 – 21% усвояемого) и высокую долю балласта – сульфата кальция. Его производят, как правило, в районах потребления удобрений, так как экономичнее доставлять концентрированное фосфатное сырье к суперфосфатным заводам, чем перевозить на дальние расстояния низкоконцентрированный простой суперфосфат.

    Получить концентрированное фосфорное удобрение можно, заменив серную кислоту при разложении фосфатного сырья на фосфорную. На этом принципе основано производство двойного суперфосфата.

    Двойного суперфосфата – концентрированное фосфорное удобрение, получаемое разложением природных фосфатов фосфорной кислотой. Он содержит 42 – 50% усвояемого, в том числе в водорастворимой форме 27 – 42% , т. е. в 2 – 3 раза больше, чем простой. По внешнему виду и фазовому составу двойной суперфосфат похож на простой суперфосфат. Однако он почти не содержит балласта – сульфата кальция.

    Двойной суперфосфат можно получать по технологической схеме, аналогичной схеме получения простого суперфосфата. Такой метод получения двойного суперфосфата носит название камерного. Его недостатками являются длительное складное дозревание продукта, сопровождающееся неорганиванными выделениями вредных фтористых соединений в атмосферу, и необходимость применения концентрированной фосфорной кислоты.

    Более прогрессивным является поточный метод производства двойного суперфосфата. В нем используют более дешевую неупаренную фосфорную кислоту. Метод является полностью непрерывным (отсуствует стадия длительного складского дозревания продукта).

    Простой и двойной суперфосфаты содержат в легко усваиваемой растениями форме. Однако в последние годы больше внимания стало уделяться выпуску удобрений с регулируемам сроком действия, в частности долговременно действующих. Для получения таких удобрений можно покрыть гранулы суперфосфата оболочкой, регулирующей высвобождение питательных веществ. Другой путь – смешение двойного суперфосфата с фосфоритной мукой. Это удобрение содержит 37 – 38% , в том числе около половины – в быстродйствующей водорастворимой форме и около половины – в медленнодействующей. Применение такого удобрения удлиняет срок его эффективного действия в почве.

    3. Почему технологический процесс получения простого суперфосфата включает стадию хранения (дозревания) на складе?

    Образующийся монокальцийфосфат в отличие от сульфата кальция не сразу выпадают в осадок. Он постепенно насыщает раствор фосфорной кислоты и начинает выкристаллизовываться в виде, когда раствор становится насыщенным. Реакция начинается в суперфосфатных камерах и длится еще в течение 5 – 20 сут хранения суперфосфата на складе. После дозревания на складе разложение фторапатита считают практически законченным, хотя в суперфосфате еще остается небольшое количество неразложившегося фосфата и свободной фосфорной кислоты.

    4. Приведите функциональную схему получения комплексных NPK – удобрений.

    5. Руководствуясь физико – химическими основами получения аммиачной селитры, обоснуйте выбор технологического режима и конструкции аппарата ИТН (использование теплоты нейтрализации.). Приведите функциональную схему производства аммиачной селитры.

    В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

    Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения процесса большое значение имеет перемешивание реагентов.

    Реакцию проводят в непрерывно действующем аппарате ИТН (использование теплоты нейтрализаuии). Реактор представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон. В реакционной зоне имеется стакан 1,в нижней части которого находятся отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2 для подачи газообразного аммиака,

    над ним барботер 3 для подачи азотной кислоты. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана. Часть раствора выводится из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) вновь идет

    вниз. Выделившийся из паражидкостной смеси соковый пар отмывается на колпачковых тарелках 6 от брызг раствора аммиачной селитры и паров азотной кислоты 20%-ным раствором селитры, а затем конденсатом сокового пара. Теплота реакции используется для частичного испарения воды из реакционной смеси (отсюда и название аппарата­

    ИТН). Разница в температурах в различных частях аппарата приводит к более интенсивной циркуляции реакционной смеси.

    Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования сплава селитры, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод.

    6. Какие меры принимают для снижения слёживаемости удобрений?

    Эффективным средством для уменьшения слеживания является обработка поверхности гранул поверхностно – активными веществами. В последние годы стали распространенными способы создания вокруг гранул различных оболочек, которые, с одной стороны, предохраняют удобрение от слеживания, с другой стороны, позволяют регулировать во времени процесс растворения питательных веществ в почвенных водах, т. е. создавать долговременно действующие удобрения.

    7. Из каких стадий состоит процесс получения карбамида? Приведите функциональную схему производства карбамида.

    Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большей устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т. е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрение, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для получения пластмасс, клеев, лаков и покрытий.

    Карбамид - белое кристаллическое вещество, содержащее 46,6 мас. % азота. Его поучения основано на реакции взаимодействия аммиака с диоксидом углирода:

    Таким образом, сырьем для производства карбамида служит аммиак и диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака.

    Реакция – суммарная; она протекает в две стадии. На первой стадии протекает синтез карбамида:

    На второй стадии происходит эндотермический процесс отщепления воды от молекулы карбамида, в результате которого и происходит образование карбамида:

    Реакция образования карбамата аммония – обратимая экзотермическая реакция, протекает с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того чтобы процесс протекает с достаточно высокой скоростью, необходимо повышенные температуры. Повышение давления компенсирует отрицательное влияние высоких температур на смещение равновесии реакции в обратную сторону. На практике синтез карбамида протекает при температурах 150 – 190 0 С и давлении 15 – 20 Мпа. В этих условиях реакция протекает с высокой скоростью и практически до конца.

    Разложение карбамада аммония – обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Для того чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температурах не ниже 98 0 С. Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамада в карбамид достикается при температуре 220 0 С. Для смещения равновесия этой реакции применяют также введение избытка аммиака, который, связывая реакционную воду, удаляет ее из сферы реакции. Однако добавить полного превращения карбамада в карбамид все же не удается. Реакционная смесь помимо продуктов реакции (карбамида и воды) содержит также карбонат аммония и продукты его разложения – аммиак и CO 2 .

    8. Каковы основные источники загрязнения ОС при производстве минеральных удобрений? Как уменьшить газовые выбросы и вредные выбросы со сточными водами в производстве фосфорных удобрений, аммиачной селитры, карбамида?

    При производстве фосфорных удобрений велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения ООС, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т. д. Для поглощения фтористых газов используют абсорбцию водой с образованием кремнефтористоводородной кислоты. Соединения фтора могут попасть и в сточные воды на стадиях промывки удобрений, газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбция на оксиде алюминия и др.

    Сточные воды производства азотных удобрений, содержащие аммиачную селитру и карбамид, направляют на биологическую очистку, предварительно смешивая их с другими сточными водами в таких соотношениях, чтобы концентрация карбамида не превышала 700 мг/л, а аммиака -65 – 70 мг/л.

    Важной задачей в производстве минеральных удобрений является очистка отходящих газов от пыли. Особенно велика возможность загрязнения атмосферы пылью удобрений на стадии грануляции. Поэтому газ, выходящий из грануляционных башен, обязательно подвергается пылеочистке сухими и мокрыми методами.

    Общие сведения о минеральных удобрениях (классификация, производство, свойства химические и агрономические)

    Минеральные удобрения делят на простые и комплексные. Простые удобрения содержат один питательный элемент. Это определение несколько условно, так как в простых удобрениях, кроме одного из основных элементов питания, могут содержаться сера, магний, кальций, микроэлементы. Простые удобрения в зависимости от того, какой элемент питания в них содержится, подразделяются на азотные, фосфорные и калийные.

    Комплексные удобрения имеют в своем составе два и более элемента питания и подразделяются на сложные, получаемые при химическом взаимодействии исходных компонентов, сложно-смешанные, вырабатываемые из простых или сложных удобрений, но с добавлением в процессе изготовления фосфорной или серной кислот с последующей нейтрализацией, и смешанные, или тукосмеси- продукт механического смешивания готовых простых и сложных удобрений.

    Азотные удобрения. Основными исходными продуктами при производстве этих удобрений являются аммиак (NH3) и азотная кислота (HN03). Аммиак получают в процессе взаимодействия газообразного азота воздуха и водорода (обычно из природного газа) при температуре 400-500° С и давления в несколько сот атмосфер в присутствии катализаторов. Азотная кислота получается при окислении аммиака. Около 70% всех азотных удобрений в нашей стране выпускается в виде аммиачной селитры, мочевины, или карбамида - CO(NH2)2 (46% N).

    Это гранулированные или мелкокристаллические соли белого цвета, легко растворимые в воде. Благодаря сравнительно высокому содержанию азота, неплохим при правильном хранении свойствам и высокой эффективности практически во всех почвенных зонах и на всех культурах аммиачная селитра и мочевина являются универсальными азотными удобрениями. Следует, однако, учитывать ряд их специфических особенностей.

    Аммиачная селитра (NH4NO3) требовательнее к условиям хранения, чем мочевина. Она не только более гигроскопична, но также и взрывоопасна. В то же время наличие в аммиачной селитре двух форм азота - аммиачной, способной поглощаться почвой, и нитратной, обладающей большой подвижностью, допускает более широкую дифференциацию способов, доз и сроков применения в различных почвенных условиях.

    Преимущество мочевины перед аммиачной селитрой установлено в условиях орошения, при некорневых подкормках овощных, плодовых, а также и зерновых культур для увеличения содержания белка.

    Около 10% выпуска азотных удобрений составляют аммиачная вода- NH4OH (20,5 и 16% N) и безводный аммиак- NH3 (82,3% N). При транспортировке, хранении и внесении этих удобрений следует принимать меры к устранению потерь аммиака. Емкости для безводного аммиака должны быть рассчитаны на давление не менее 20 атм. Потерь азота во время внесения жидких аммиачных удобрений можно избежать путем заделки на глубину 10-18 см водного и 16-20 см безводного аммиака. На легких песчаных почвах глубина размещения удобрений должна быть больше, чем па глинистых.

    Аммиачный азот фиксируется почвой, и поэтому жидкие азотные удобрения вносят не только весной под посев яровых культур и под пропашные культуры в подкормку, но и осенью под озимые и при зяблевой вспашке.

    Достаточно широко применяется в сельском хозяйстве сульфат аммония - (NH4)2SO4 (20% N), побочный продукт промышленности. Это эффективное удобрение с хорошими физическими свойствами, одна из лучших форм азотных удобрений в условиях орошения. При систематическом применении сульфата аммония на дерново-подзолистых почвах возможно подкисление их.

    Практическое значение из азотных удобрений имеют также аммиакаты-растворы азотсодержащих солей (аммиачной селитры, мочевины, карбоната аммония) в концентрированном водном аммиаке. Обычно это полупродукты химического производства, имеющие высокую концентрацию азота (35-50%). Эти удобрения по эффективности не уступают твердым удобрениям, но требуют для перевозки емкостей с антикоррозионным покрытием. При внесении аммиакатов в почву необходимо принимать меры, исключающие потери аммиака.

    В качестве азотного удобрения в сельском хозяйстве применяется также некоторое количество натриевой селитры - NaNO3 (15% N), кальциевой селитры-Ca(NO3)2 (15% N) и цианамида кальция-Ca(CN)2 (21% N). Это в основном отходы других отраслей промышленности. Будучи физиологически щелочными, указанные формы эффективны на кислых почвах.

    Нитратные формы азотных удобрений имеют преимущество как наиболее быстродействующие туки. Поэтому они с большие успехом могут применяться при подкормках.

    Фосфорные удобрения. Простой суперфосфат- Са(Н2РО4)2 Н2О+2СаSO4 (14-20% Р2О5) получают путем обработки обогащенных природных фосфатов серной кислотой. Состав и качество конечного продукта во многом зависят от исходного сырья. Суперфосфат из апатитового концентрата выпускают в основном в гранулированном виде. Для улучшения физических свойств суперфосфата продукт подвергают обработке аммиаком с целью нейтрализации кислотности, получая аммонизированный суперфосфат (2,5% N).

    Ускоренными темпами развивается производство более концентрированного фосфорного удобрения - двойного суперфосфата [Са(Н2РО4)2 H2O] (46% Р2О5). В условиях нашей страны курс на производство концентрированных удобрений экономически обоснован. При использовании таких удобрений значительно снижаются расходы на перевозку, хранение и внесение туков.

    Получают двойной суперфосфат из того же сырья, что и простой, но путем обработки его фосфорной кислотой Удобрение выпускается в гранулированном виде и имеет хорошие физические свойства. И тот, и другой суперфосфат по эффективности равноценны. Он может применяться на всех почвах и под все культуры.

    В кислой почве растворимые фосфорные удобрения переходят в труднодоступные формы фосфатов алюминия и железа, а в почвах, богатых известью, -в трёхкальциевые фосфаты также трудно доступные растениям. Эти процессы снижают коэффициент использования фосфорных удобрений. При низкой обеспеченности почв фосфором и внесении малых доз, особенно при смешивании их со всем пахотным горизонтом, можно не получить желаемого результата от фосфорных удобрений.

    Фосфоритная мука представляет собой размолотые природные фосфориты. Это удобрение труднорастворимо в воде и малодоступно растениям. При внесении в почву под влиянием выделений корней растений, под действием кислотности почвы и почвенных микроорганизмов фосфоритная мука постепенно переходит в доступное для растений состояние и оказывает действие в течение ряда лет. Лучше всего фосфоритную муку вносить под вспашку или перекопку участка заблаговременно. Для внесения в рядки и гнезда фосфоритная мука непригодна.

    Помимо непосредственного внесения фосфоритную муку используют как добавку к компостам, а также применяют в виде смеси с другими удобрениями (азотными и калийными). Фосфоритная мука используется в качестве добавок для нейтрализации кислых удобрений, например к суперфосфату.

    Калийные удобрения. Калийные удобрения получают из калийных руд природных месторождений. В России наибольшие запасы калия имеет Верхне-Камское месторождение, на базе которого работают калийные комбинаты в Соликамске и Березниках. Сильвинит-это смесь солей хлористого калия и хлористого натрия. Технология его переработки в калийное удобрение заключается в освобождении от балласта-хлористого натрия и многочисленных примесей путем растворения и кристаллизации при соответствующих температурах и концентрациях, а также методом флотации.

    Хлористый калий-КС1 (60% К2О)-соль, хорошо растворимая в воде. Это самое распространенное калийное удобрение. Хлористый калий составляет более 90% всех источников калия для растений в различных удобрениях, в том числе и сложных.

    Разработка новых технологических процессов с получением крупнозернистого продукта, обработка специальными добавками позволили свести к минимуму слеживаемость хлористого калия при хранении и значительно упростить весь цикл транспортировки удобрения от завода до поля.

    В небольшом количестве продолжается выпуск также смешанных калийных солей, главным образом 40%-ной калийной соли, которую приготовляют, смешивая хлористый калий с непереработанным молотым сильвинитом.

    В незначительном количестве сельское хозяйство получает несколько видов бесхлорных удобрений-побочных продуктов различных производств. Это сульфат калия - отход алюминиевой промышленности Закавказья, порошковидное удобрение с хорошими физическими свойствами. Поташ-К2СО3 (57-64% К20) - щелочное, сильно гигроскопическое удобрение, отход переработки нефелина. Цементная пыль (10-14% К2О), конденсируемая на некоторых цементных заводах, универсальное удобрение для кислых почв с неплохими физическими свойствами.

    Установлено, что при систематическом применении хлорсодержащих калийных удобрений снижается содержание крахмала в клубнях картофеля, ухудшаются свойства курительных сортов табака, в некоторых районах качество винограда, а также урожай некоторых крупяных культур, в частности гречихи. В этих случаях следует отдавать предпочтение сернокислым солям или чередовать их с хлористыми. Важно учитывать также, что хлор, внесенный в составе удобрений с осени, практически полностью вымывается из корнеобитаемого слоя почвы.

    Одни калийные удобрения применяют лишь на некоторых разновидностях торфяных почв, богатых азотом и фосфором. Влияние калия усиливается с известкованием. В севообороте с культурами, выносящими много калия (картофель, сахарная свекла, клевер, люцерна, корнеплоды), потребность в нем и эффективность его выше, чем в севооборотах лишь с зерновыми культурами. На фоне навоза, особенно в год его внесения, эффективность калийных удобрений снижается.

    Коэффициент использования калия из калийных удобрений колеблется от 40 до 80%, в среднем в год внесения может быть принят 50%. Последействие калийных удобрений проявляется 1-2 года, а после систематического применения более длительный срок.

    Когда беседа поднимается о комбинатах, в основном думают, что это: парк техники, множество рабочих, большое количество разного технологического оборудования, территория с внушительными длинными терминалами. Большинство отечественных фабрик таким образом организованы, однако они являются не оптимизированными. Рентабельность хорошего комбината обусловлена не мощностью, а покупкой оптимального производственного оборудования . Мини заводы приходят вместо заводов старого типа.

    Мини производство удобрений

    Предлагаем Вам комплект оборудования для производства удобрений и биогаза, который снизит Ваши затраты на утилизацию органических отходов (коровий, птичий, свиной и др. навоз) и дополнительно позволит выпускать высокоэффективное экологически чистое жидкое органическое удобрение "КОУД". Установив оборудование, вы сможете забыть о покупке дорогостоящих минеральных удобрений и полностью обеспечить потребности своего хозяйства в подкормке сельхохозяйственных культур.

    Кроме этого, оборудование вырабатывает источник энергии – биогаз, который можно использовать для получения электроэнергии, для нагрева воды в технологических целях и т.д.

    Установка предназначена для безотходной, экологически чистой переработки органических отходов сельскохозяйственного производства (навоза, помета, фекалий, твердых бытовых отходов, пищевых отходов, растительных остатков), имеющего КРС или других домашних животных (свиньи, овцы, козы, лошади, пушные звери и т.д.) и птицу (куры, гуси, утки, индюшки и т.д.) в газообразное топливо – биогаз, конвертируемый далее в электрическую и тепловую энергию, экологически чистые жидкие или твердые органические удобрения, лишенные нитратов и нитритов, семян сорняков, патогенной микрофлоры, яиц гельминтов, специфических запахов.

    Она осуществляет биотехнологическую переработку всех видов органических отходов (навоза, помета) фермы крупного рогатого скота (КРС) на 15-20 голов, или свинофермы на 150-180 голов, или птицефермы на 1500-1800 голов и позволяет наладить непрерывное производство удобрений.

    Производительность:

    Количество перерабатываемых отходов при влажности 85% т/сутки – до 0,6

    Выход по биогазу с общей теплотворной способностью 480 тыс. кДж/сутки (эквивалент 17 кг топочного мазута) до 24 куб. м. в сутки

    Общее количество вырабатываемой тепловой энергии, 432 тыс. кДж в сутки

    Эквивалент по электроэнергии 48 кВт*ч в сутки

    Количество вырабатываемых органических удобрений до 0,6 тонн в сутки

    Расход тепла на собственные нужды не более 30% от вырабатываемого

    Продукты:

    Биогаз, содержит 60% метана, 40% углекислого газа, не содержит сероводорода, теплотворная способность 20-22 тыс. кДж/куб.м. используется в любых бытовых газовых приборах

    Тепловая энергия – горячая вода (70-90 гр.С) для отопления бытовых и производственных помещений площадью 75-90 кв.м.

    Электрическая энергия – переменный ток 220-380 В, 50 Гц

    Жидкие удобрения

    Срок эксплуатации 10 лет. Процесс непрерывный.

    Установка может собираться в батареи из 2-х и более блок-модулей и обрабатывать, соответственно, отходы от 30-40 и более голов КРС или другой живности.

    В базовую комплектацию входят биореактор и газгольдер.

    При Вашем желании изготовим и установим любое дополнительно оборудование для полной автоматизации работы биореактора и использования его продуктов.

    Мини-комплектация системы.

    Предназначена для использования частными лицами, имеющими небольшое количество КРС, свиней, птиц.

    Стандартная комплектация имеет объем биореактора 1 куб.м. и позволяет перерабатывать отходы от 2 до 4 коров, от 25 до 30 свиней, от 250 до 300 птиц. Комплектация может быть изменена.

    Использование этой системы позволит получать ежедневно 100 кг высококачественного удобрения "КОУД". При комплектации газгольдером возможно получение биогаза для использования в бытовых целях.

    Источник: http://bmpa.narod.ru/page7.html

    Мини производство удобрений

    Аммиак / Вода аммиачная / Диамонийфосфат / Запчасти к арматуре промышленной / Запчасти к компрессорам / Запчасти к насосам / Изделия из пластмасс / Карбамид / Пленки полимерные полиолефиновые / Селитра аммиачная / Удобрения / Смолы

    Продукция: Зерновые / Подсолнечник / Мясо птицы / Яйца птицы / Паштеты из мяса птицы / Сухой куриный помет

    Источник: http://www.poshuk.com/kved/Ind.24.15.0

    Мини производство удобрений

    Самое главное в бизнесе по производству удобрений - это постоянное внедрение инноваций. Зачастую бывает мало просто освоить их производство, нужно постоянно разрабатывать новые возможности упрощения технологического процесса, разрабатывать проектно-конструкторскую документацию, осваивать новые виды продукции, быть в курсе новостей в данной области и так далее. Это - достаточно динамичная отрасль. Разработка новых схем получения неорганических удобрений - также может стать одним из направлений деятельности.

    Основной потребитель минеральных удобрений - это представители сельскохозяйственной отрасли. Ее сейчас невозможно представить без применения минеральных удобрений в том или ином количестве, таким образом, отрасль их производства всегда будет востребована. Однако, несмотря на это, на рынке уже имеется большое количество их производителей, поэтому конкуренцию могут выдержать лишь те, кто основывает и внедряет инновации.

    Оборудование для производства удобрений

    Завод по производству удобрений должен иметь необходимое оборудование для совершения своей деятельности. Получение разрешений в данной сфере деятельности обязательно. Также важно соблюдать е только нормы пожаробезопасности или производства химической продукции, но также и экологические. Очень важно заранее выбрать поставщиков качественного оборудования для производства минеральных удобрений. Здесь можно выбрать как российские машиностроительные заводы, так и зарубежные. Зачастую в поставке европейского оборудования нет особой необходимости, поскольку отечественные производители также предлагают достаточно неплохие по качеству конструкции, которые порой даже бывают более адаптированы к местному производству.

    Производство удобрений - документы и разрешения

    Источник: http://promplace.ru/article_single.php?arc=98

    Мини производство удобрений

    Юрий Слащинин:

    Предлагаются вам не чертежи, а метод и технология.

    Я не знаю ваших условий и возможностей. А вы, зная их, можете легко приспособить к ним предлагаемую технологию. Она общедоступна, проста, а значит, истинна. Истинна, потому что исходит из главного секрета урожайности: чем больше в почве бактерий, тем выше урожай.

    Исходя из этого закона, не трудно сделать вывод, что для получения высоких урожаев требуется ускоренное размножение в почве бактерий и прочего «живого вещества». Именно этому земледелец должен научиться в наших новых условиях. Научиться делать это «размножение» с виртуозной легкостью во всех возможных вариантах, используя имеющуюся органику, оборудование и даже окружающую среду.

    Говорю это к тому, что совсем не обязательно вывозить на поля тысячи тонн органики. Надо там же и оставлять ее, как делали первые земледельцы Земли, следуя законам природы. Они уносили с поля колосья, плоды, овощи. А все оставшееся тут же запахивали в землю. У нас же предписано: солому - в скирды, стерню - сжечь, ботву - на межу, листья - на свалку и т.д. И все под благовидными предлогами борьбы с сорняками и вредителями, а по сути - с единственной целью увести подальше от возможности получить повышенный урожай.

    И для производства органических удобрений вовсе не требуется 2-3 лет. Факт деления бактерий в среднем за 20 минут известен давно. Надо пользоваться этим и делать все возможное для размножения бактерий, а не губить их химией и глубокой пахотой, как предписывается ныне действующей агротехникой.

    Предлагаемая технология производства органических удобрений направлена на создание всего возможного для размножения полезных бактерий почвы в максимальном объеме при минимально коротких сроках.

    В зависимости от оснащенности мини-завода этот срок будет колебаться от 2-х недель до 1 суток.

    А это, как понимаете, уже поточное производство продукции , эквивалентной зерну, овощам и фруктам, в которые превратятся отходы нашей жизнедеятельности.

    И последняя оговорка для уточнения. У некоторых читателей наших изданий может сложиться мнение, что мы полностью отвергаем минеральные удобрения. Это не так. Мы - сторонники органического земледелия - всегда знали, что минералы и микроэлементы растениям нужны.

    Так же, как и человеку.

    Но ведь вы, садясь обедать, не подаете в тарелках вместо супа растворы железного купороса с кусочками калия, блестками серы и зеленью ядовитого хрома, медного купороса. Почему же растениям сгружается все это под благовидным предлогом «накормить» и повысить урожай?

    Минералы и микроэлементы растениями нужны. Но, во-первых, многие из них растения получают из почвы, воздуха и воды. Во–вторых, самый главный их поставщик в сбалансированном виде (как уже говорилось) - это отжившие бактерии, их переГНОЙ. А в случае, когда первое и второе не в состоянии обеспечить растения всем необходимым для полноценного развития, то минералы и микроэлементы просто необходимо внести в почву.

    Мы же будем это делать не только напрямую, но и окольно. То есть использовать бактерии. Пусть возьмут в себя, сколько в состоянии вобрать, а после своей короткой жизни передадут все растениям в усвояемом виде. Вот тогда и не будут накапливаться в зерне, овощах и фруктах нитраты и прочая химическая гадость.

    Схема мини-завода

    Перед вами схема основного модуля мини-завода. Назовем ее так:

    Установка

    для превращения органических отходов

    в чернозем повышенного плодородия

    Компоненты органических составляющих поступают на приемную площадку. При необходимости измельчаются измельчителем (1) и подаются в бункер-накопитель (2), откуда поступают на ленту транспортера (4) в заданных задвижками (3) количествах. Транспортер сбрасывает компоненты в вильчатый смеситель-разрыхлитель (5), где они перемешиваются, рыхлятся и транспортером (6) подаются в биореактор (7).

    Биореактор представляет собой кирпичный туннель с брезентовым, легко съемным покрытием (8). На полу уложены перфорированные трубы (9), в которые подается пар из парогенератора (10). Загруженная в биореактор масса быстро увлажняется и нагревается паром до температуры 60-70 0 С, при которой гарантированно погибают гельменты и патогенная микрофлора, и процесс компостирования органических компонентов термофильной биофлорой идет в оптимальном, ускоренном режиме. Установленные внутри биореактора датчики автоматически поддерживают температуру и влажность через блок управления.

    Процесс переработки органики в питательную массу для «живого вещества» или животных (в случае производства кормов) ускоряется в сотни раз и длится 1-3 суток.

    Стерилизованная масса из биореактора выгребается шнековым погрузчиком (11) в смеситель (12), куда одновременно подаются для смешивания почвенные аэробные бактерии из питателя (13) и микроэлементы из питателя (14). И готовая продукция отгружается на поля.

    При этом не потребуется заниматься лишней работой. Например, возить с полей солому или ботву на мини-завод, а ЗАТЕМ ВНОВЬ транспортировать на поля. Тратя при этом силы, рабочее время, горючее и т.д. Проще максимум органики сразу оставлять на полях, при уборке, а к ней добавлять бактериальную «закваску», приготовленную на нашем мини-заводе. И не просто закваску, но еще и запас минеральных веществ, микроэлементов, всевозможных стимуляторов для увеличивающихся масс бактерий, которые разовьются на органике полей. Этот запас именуется «затравкой». Затравка совместно с «закваской» оздоровят почву. В итоге - меньше затрат и больше пользы.

    Мини-завод введет вас в кругооборот высоких урожаев. Раньше эту образующую круговорот функцию выполняла корова и вообще скот, навоз от которого поступал на поля, удобрял, увеличивая урожай, и часть урожая вновь возвращалась скоту… и так продолжалось до бесконечности… А теперь все это обеспечит мини-завод. Причем обеспечит на новой качественной основе, гарантирующей повышенный урожай в земледелии и повышенную продуктивность в животноводстве.

    Если убедил скептиков, вернемся к мини-заводу.

    Что. Зачем. Почему.

    Осознанно и умышленно вам предлагается схема, а не проектный чертеж мини-завода. Почему?

    А потому что чертеж - это предписание: делай так, а не иначе. По умолчанию здесь предполагается условие: если не сделаешь по-нашему - мы не отвечаем за последствия. В чем-то такой подход правильный. А в чем-то и уловка, насилие.

    Например, почему я должен делать «так и не иначе», если придумал «лучше и эффективнее»? Вот ради такого раскрепощения вашей творческой мысли, ради расширения простора по использованию ваших ресурсов, имеющегося оборудования, которое можно приспособить, вам предлагается именно схема мини-завода.

    Итак, общая для всех идея - построить мини-завод по производству Закваски и Затравки для бактерий почвы.

    Для завода, даже малого, потребуется территория, стены… И каждый сейчас их представляет по-разному, исходя из того, что имеет или может иметь.

    А можно обойтись и без стен с крышей. В конце главы изложен общедоступный дешевый вариант производства методом буртового компостирования на открытых площадках.

    Правда, процесс производства будет, естественно, растянут по срокам за счет холодных периодов. Но летом все получится как надо. Вот вам уже и вариант на случай крайней нужды.

    Поставите над буртом крышу - возможности расширятся. Разместите бурты в каком-либо приспособленном помещении - еще лучше. А если помещение отапливается, имеет электричество и воду, тогда - совсем прекрасно.

    Юрий Слащинин Разумное земледелие

    продолжение следует.

    Самое главное в бизнесе по производству удобрений - это постоянное внедрение инноваций. Зачастую бывает мало просто освоить их производство, нужно постоянно разрабатывать новые возможности упрощения технологического процесса, разрабатывать проектно-конструкторскую документацию, осваивать новые виды продукции, быть в курсе новостей в данной области и так далее. Это - достаточно динамичная отрасль. Разработка новых схем получения неорганических удобрений - также может стать одним из направлений деятельности.

    Основной потребитель минеральных удобрений - это представители сельскохозяйственной отрасли. Ее сейчас невозможно представить без применения минеральных удобрений в том или ином количестве, таким образом, отрасль их производства всегда будет востребована. Однако, несмотря на это, на рынке уже имеется большое количество их производителей, поэтому конкуренцию могут выдержать лишь те, кто основывает и внедряет инновации.

    Производство удобрений - состав

    Неорганические удобрения могут быть простыми. В их состав входит только один питательный элемент, а побочными в таком случае могут являться кальций, магний, торф, сера, прочие микроэлементы, которые могут оказаться полезными. В свою очередь они могут быть или же азотными. Второй тип удобрений - это комплексные, в основу которых заложено использование двух или трех основных элементов. Они также подразделяются на виды - сложносмешанные, смешанные, сложные.

    Оборудование для производства удобрений

    Завод по производству удобрений должен иметь необходимое оборудование для совершения своей деятельности. Получение разрешений в данной сфере деятельности обязательно. Также важно соблюдать е только нормы пожаробезопасности или производства химической продукции, но также и экологические. Очень важно заранее выбрать поставщиков качественного оборудования для производства минеральных удобрений. Здесь можно выбрать как российские машиностроительные заводы, так и зарубежные. Зачастую в поставке европейского оборудования нет особой необходимости, поскольку отечественные производители также предлагают достаточно неплохие по качеству конструкции, которые порой даже бывают более адаптированы к местному производству.

    По виду производства удобрения могут быть простые, полные и специфические. В зависимости от того, какой вид удобрений вы будете производить, зависит комплектация поставляемого оборудования. Конечно, его состав может варьироваться в зависимости, к примеру, от того, какие вещества вы будете добавлять в качестве побочных и так далее. Самое главное здесь - создать все условия, соответствующие принятым стандартам для получения качественного продукта. Порой поставляемые машины могут быть ориентированы на какой-либо из распространенных видов определенных удобрений. Здесь уже все зависит напрямую от вашего выбора специфики производства и метода получения удобрений - здесь может быть применен гидролиз, гидролиз минеральных добавок или опила, другие методы, которые в вашем случае станут ключевым моментом в производстве.

    Производство удобрений - документы и разрешения

    Что касается разрешений, здесь может действовать стандартная схема - получение соответствующих бумаг в администрации вашего города или другого населенного пункта, разрешение службы пожарной безопасности, разрешение экологических служб, санитарных, в некоторых случаях даже карантинных, порой может потребоваться разрешение на эксплуатацию отдельных видов оборудования и так далее. Применяемые к данному производству стандарты могут варьироваться в зависимости от содержащихся в минеральных удобрениях веществ, здесь очень важно помнить об этом моменте. К примеру, производства карбамида «А» регулирует ГОСТ-2081-92Е.

    Что касается такого вопроса, как и применяемые к нему требования, здесь могут быть использованы стандарты ВСН 514-89, которые регламентируют проектирование заводов по производству удобрений с использованием блоков. Там же написаны требования и к самой технологии производства минеральных удобрений. Документ основан на ГОСТ 21.401-88 о технологии производства и требованиям к проектированию, СНиП 3.01.01.85 об организации строительного производства, СНиП 3.05.05.84 - о технологическом оборудовании и трубопроводной системе. К проектированию завода стоит отнестись достаточно ответственно, в противном случае вы можете попросту не получить соответствующего разрешения служб по регулированию экологический ситуации в вашем населенном пункте, кроме того, противоречие этим стандартам может привести к тому. что вы не получите и разрешение службы пожарной безопасности.

    Внесение гранулированных удобрений - эффективный и технологически простой способ подпитки почвы. Редакция Aggeek побывала на заводе по производству гранул - теперь рассказываем, что мы там увидели.

    Удобрения могут вноситься в почву в разных агрегатных состояниях. Есть жидкие — КАС или аммиачная вода. Есть удобрения, которые газифицируются непосредственно в почве — это жидкий азот. И есть третий тип удобрений — твердые: они могут быть кристаллическими или в виде гранул.

    Внесение удобрений в гранулах — наиболее технологически простой способ

    Гранулированные удобрения имеют ряд преимуществ. В сравнении с порошкообразными удобрениями их расход и норма внесения в почву ниже . При этом действие гранулированного удобрений на сельскохозяйственные культуры эффективнее. Гранулы равномерно питают почву, создавая питательные зоны.

    Чтобы вносить удобрения в гранулах, можно использовать как обычные сеялки, так и специальные разбрасыватели.

    Сами гранулы могут быть трех типов в зависимости от метода призводства. Первый тип — это гранулы, которые получены методом приллирования . Плавы разбрызгиваются в башнях с восходящим потоком воздуха. Центробежные, статические и вибрационные грануляторы помещаются под потолком баши и диспергируют плавы. Гранулы (прилли ) получаются однородными.

    Второй тип гранул получают при помощи барабанного гранулятора . В барабан впрыскиваются жидкие расплавы, растворы или суспензии. Сырье в барабане осушается и скатывается. Это стандартное барабанное гранулирование.

    Третий метод — компактирование. Все компоненты перемалываются в мелкую пыль. А потом под большим давлениям “сбиваются” в гранулу.

    Компактирование гранул позволяет получить “эксклюзивные” удобрения

    Первые две технологии чрезвычайно энергозатратные, поэтому распространение приобрела третья технология — компактирование гранул.

    Преимущества технологии очевидны: она гибкая — для производства гранул можно использовать огромное количество компонентов. Это позволяет получить фермеру продукт, который будет учитывать условия его почв.

    Есть некоторые ограничения — необходимо, чтобы был узел, который позволяет автоматизировать подготовку сырья под многокомпонентные удобрения: азот, фосфор, калий и различные дополнительные элементы.

    Для того чтобы посмотреть, как проходит производство удобрений в гранулах мы отправились на предприятие Grossdorf . Мощность производственной линии — 150 тонн удобрений в сутки. На линии работает 5 человек. Перед тем, как допустить специалистов к работе — их обучают. Здесь важно сохранять последовательность запуска и выключения линии. Даже в случае срочной аварийной остановки — нужно придерживаться строгой последовательность выключения узлов. В противном случае сырье останется внутри оборудования. И вновь запустить линию будет практически невозможно.

    Производственный цикл бесперебойный

    Сырье на завод по производству удобрений поступает в биг-бегах.


    Потом разные компоненты подаются в бункер и смешиваются в нужной пропорции. После чего нория — ковшовый элеватор — поднимает сырье на высоту 16,5 метров и загружает в шестикубовый бункер, который разделен на две части.

    Используется именно ковшовый элеватор, потому что лента цепного не выдерживает нагрузок. При загрузке в бункер образуется много пыли. Для обеспечения надлежащих условий труда устанавливаются вытяжка “улитка”, которая забирает пыль и скидывает ее в бункер-накопитель.

    Сырье по нории подается бесперебойно. Причем если это многокомпонентное удобрение, то компоненты смешивается в необходимой пропорции. Сегодня эта работа на заводе Grossdorf осуществляется в ручном режиме. Но уже разработан проект, который позволит составлять пропорции, дозировать, смешивать и подавать сырье автоматически.


    Из накопительного бункера выходит две линии. Это сделано для того, чтобы обеспечить бесперебойность производства. Если один из узлов выйдет из строя, то второй будет работать. В таком случае объем производитства снизится, но завод не нужно будет останавливать.

    Шнек, который находится ниже разрыхляет сырье. И уже после этого подается на валковый пресс.

    Гранулы производятся под давлением 70 атмосфер


    Подачу на валковый пресс осуществляют обе линии. Для каждой из них можно изменять скорость прессования. Корректировка скорости необходима в тех случаях, если смесь имеет высокую твердость — тогда уменьшается дозировка, а скорость прессования увеличивается. Таким образом системе проще “продавить” сырье.

    Под давление валкового пресса, которое составляет 70 атмосфер, образовываются своеобразные полосы материала, так называемая плитка. Два цилиндра, пневматика, двигатель, редуктор — это то, что обеспечивает работу. К тому же, постоянное давление поддерживает маслостанция, в которую заливается 750 литров полусинтетического масла. Есть возможность регулировать темпа работы агрегата.

    Материал, полученный из валкового пресса, необходимо измельчить. Поэтому продукт отправляется в дробилку, где измельчается на гранулы. Каждая дробилка имеет мощность 33 кВт.

    Все, что меньше отправляется на переработку, а крупные повторно дробят. Основной же продукт по ковшовому элеватору попадает в бункер, где наполняется в беги.


    Если в бункере 1200-1300 кг — начинается пересыпание продукции в беги. Когда засыпается 800 кг удобрений — линия подачи автоматически закрывается. На этой линии работает 2 специалиста. Это финальная стадия производства твердых удобрений. Гранулы приготовлены, расфасованы и направляются на склад готовой продукции.


    Справка. Агрохимическая компания Grossdorf открыла в Черкасской области производство гранулированных минеральных удобрений в июне этого года. Предприятие также производит КАС — доля на рынке Украины по производству этих удобрений составила 15%.