• Что можно приготовить из кальмаров: быстро и вкусно

    При облучении атом вещества переходит в возбуждённое состояние, сопровождающееся переходом электронов на более высокие квантовые уровни. В возбуждённом состоянии атом находится около одной микросекунды, после чего возвращается в основное состояние. При этом электроны с внешних оболочек либо заполняют образовавшиеся вакантные места, а излишек энергии испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек. Каждый атом испускает фотоэлектрон с энергией строго пределённого значения. По энергии и количеству квантов судят о строении вещества. После возбуждения спектр регистрируется на специальном детекторе. Чем лучше спектральное разрешение детектора, тем точнее он сможет отделять друг от друга фотоны от разных элементов. После попадания на детектор фотоэлектрон преобразовывается в импульс напряжения и передается на компьютер. По пикам полученного спектра качественно определяется, какие элементы присутствуют в образце.
    Для получения точного количественного содержания полученный спектр обрабатывается с помощью специальной программы калибровки (количественной градуировки прибора). Калибровка проводится с использованием стандартных образцов, чей элементный состав точно известен.
    РФА не разрушает и не деформирует пробу, не требует пробоподготовки, делает ненужной измерение количества пробы - взвешивание, измерение объема и т.п. Этот метод широко используется на производстве и в научных лабораториях.
    Аппараты ComPact eco PIN и Cube PIN для количественного анализа наиболее распространенных сплавов в ювелирной промышленности. Разработаны на базе кремниевого детектора высокого разрешения, являющегося последним словом в этой области.
    Калибровка
    Предварительная калибровка для золота и других драгоценных металлов.
    Операционная система
    X-MasteR Основной задачей операционной системы является управление параметрами рентгеновской системы, а также сбор и обработка данных измерений.
    Анализаторы оснащены современным, простым в использовании программным обеспечением с точным алгоритмом анализа состава ювелирных украшений, монет и других изделий из драгоценных металлов. Программное обеспечение обеспечивает сбор данных, управление, пиковую идентификацию, анализ спектральных характеристик, количественный анализ исследуемого сплава, генерацию отчетов, управление статистическими данными, их хранение и печать.
    Компактность и мобильность
    Аппараты имеют небольшие массу и габариты и являются переносными, что позволяет их устанавливать практически где угодно - от больших выставочных залов до маленьких шоурумов. Каждый аппарат выпускается в двух вариантах конструктивного исполнения:
    ComPact и Cube
    Аппараты ComPact eco PIN и Cube PIN с использованием кремниевого детектора высокого разрешения в сочетании с цифровой обработкой данных обеспечивают отличные показатели пороговой чувствительности и точности. По сравнению с общепринятыми методами раз решение выше почти в четыре раза, а разделение элементов также намного лучше. Высокий уровень характеристик получен во многом благодаря более высокому отношению «сигнал /шум».
    Безопасность Эксплуатация источника рентгеновского излучения отвечает установленным требованиям. Встроенная система безопасности обеспечивает эффективное управление всеми защитными функциями и блокировками аппаратов Citizen.
    Простота в использовании
    Предлагаемые технические устройства являются удобными и простыми в эксплуатации, не требуют специально обученного персонала. Необходимо просто поместить испытуемый образец в рабочую камеру и через 35 - 180 сек. получить готовый результат. Анализ проводится бесконтактным и безопасным способом.

    Время измерения 35 - 180 сек.

    Размеры камеры
    Высота 170 мм, ширина 330 мм, глубина 200 мм (Cube)
    Выкладка образцов Подъемно-поворотный столик z-образного типа


    Вид исследования Стоимость / руб.
    Определение массовой доли элементов (спектральный анализ) в металле, сплаве
    (1 образец/1 исследование)
    14 000
    Испытание на растяжение При нагрузке до 40 тонн 7500
    При нагрузке от 40 тонн 12000
    При повышенных температурах 13000
    При пониженных температурах 13000
    С тензометром 20500
    Пластинчатых цепей 85000
    10300
    Испытание на ударный изгиб При комнатной температуре 4500
    При пониженной температуре 6300
    При повышенной температуре 9500
    После механического старения 16000
    Измерение твердости По методу Роквелла (З отпечатка) 4500
    По методу Бринелля (1 отпечаток) 4500
    По методу Виккерса (1 отпечаток) 4500
    Испытание на сжатие С определением предела прочности 7500
    Кольцевых образцов чугунных труб большого диаметра 9600
    Исследование склонности к межкристаллической коррозии методом АМУ Без провоцирующего нагрева 6300
    С провоцирующим нагревом 18600
    Исследование износостойкости и коэффициента трения на машине ф. Сузуки 500 об., скорость 82 об/мин 11000
    При длительных испытаниях (1 смена) 16000
    Испытание на износостойкость на приборе ф. «Шкода-Савин» 10500
    Исследование усталостных характеристик 170000
    Испытания канатов (по результатам испытаний проволок каната) 110000
    Испытание на кручение на машине ф. «Амслер» 17000
    Определение шероховатости 9600

    Исследование характеристик металлов и сплавов востребовано в различных сферах: в строительстве, инженерном проектировании, в машиностроении и станкостроении. В рамках экспертизы можно исследовать характеристики металлоконструкций, труб, арматуры, качественный и количественный состав сплавов, металлов и изделий из них.

    Целью металловедческой экспертизы может быть обнаружение следов металлизации на объекте, выявление химического состава металлов и сплавов. Исследование такого рода помогают установить факты поддельного производства продукции. По физико-химической экспертизе можно установить нарушение производственного процесса, вызванного различными дефектами металла или сплава. Подобные нарушения могут отразиться на сроке эксплуатации изделия.

    Экспертиза металлов, сплавов и изделий из них имеет большой спектр применения в различных областях. Металловедческая экспертиза так же используется в области, касающиеся защиты прав потребителей.

    Экспертиза металлов широко применимы в криминалистике для исследования изделий их драгоценных металлов. К таким объектам относятся все детали, состав которых входят благородные металлы (золота, серебра, платины и др.).

    Экспертиза металлов и сплавов определяет:

    • состав изделия;
    • способ изготовления;
    • сферу применения;
    • способы эксплуатации;

    По цели исследования экспертизой решаются задачи:

    Идентификационные задачи:

    • определение классификационных признаков исследуемого предмета;
    • определение источника производства сравниваемых металлических изделий;

    Объекты, предоставляемые для проведения экспертизы металлов, сплавов и изделий из них:

    Список объектов данной экспертизы очень широк, что является следствием использования изделий из металлов и их сплавов в современной жизни. Все металлические объекты принято классифицировать по материалу, из которого они изготовлены, и по функциональному признаку.

    • холодное оружие (ножи, сабли, кортики, кинжалы, кастеты, мечи, стилеты и пр.);
    • автомобильные запчасти;
    • изделия из черных металлов (провода и кабели, рельсы, стыковые накладки, изделия из чугуна и пр.);
    • изделия из цветных металлов (арматура, трубы, заготовки и пр.);
    • изделия из драгоценных металлов (детали для электроники, ювелирные изделия и пр.);
    • бытовые предметы (посуда, элементы одежды, мебельные детали, светильники и пр.).

    Мы работаем с лабораторным комплексом, оснащенным необходимым оборудованием. В нашей компании работают специалисты, имеющие возможность проводить широкий круг исследований

    СПЕКТРАЛЬНЫЙ АНАЛИЗ (при помощи спектров испускания) имеет применение почти во всех отраслях хозяйства. Широко применяется в металлопромышленности для быстрого анализа железа, стали, чугуна, а также различных специальных сталей и готовых металлических изделий, для установления чистоты легких, цветных и драгоценных металлов. Большое применение имеет спектральный анализ в геохимии при изучении состава полезных ископаемых. В химической промышленности и близких к ней отраслях спектральный анализ служит для установления чистоты выпускаемой и применяемой продукции, для анализа катализаторов, различных остатков, осадков, мутей и промывных вод; в медицине - для открытия металлов в различных органических тканях. Ряд специальных задач, трудно разрешаемых или вовсе не разрешимых иным путем, решается при помощи спектрального анализа быстро и точно. Сюда относится, например, распределение металлов в сплавах, исследование в сплавах и минералах сульфидных и других включений; такого рода исследования иногда обозначаются термином локальный анализ .

    Выбор того или другого типа спектрального аппарата с точки зрения достаточности его дисперсии производится в зависимости от цели и задач спектрального анализа. Для исследования платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt), а также Fe, Co, Ni, Сг, V, Mo, W, Ti, Mn, Zr, Re, Nb и Та наиболее пригодны кварцевые спектрографы с большей дисперсией, дающие для длин волн 4000-2200 Ӑ полоску спектра длиной по крайней мере 22 см. Для остальных элементов м. б. применены аппараты, дающие спектры длиной 7-15 см. Спектрографы со стеклянной оптикой в общем имеют меньшее значение. Из них удобны комбинированные приборы (например, фирмы Гильгера и Фюсса), которые по желанию можно применять в качестве спектроскопа и спектрографа. Для получения спектров применяются следующие источники энергии. 1) Пламя горящей смеси - водорода и кислорода, смеси кислорода и светильного газа, смеси кислорода и ацетилена или наконец воздуха и ацетилена. В последнем случае температура источника света доходит до 2500-3000°С. Пламя наиболее всего пригодно для получения спектров щелочных и щелочноземельных металлов, а также для таких элементов, как Сu, Hg и Тl. 2) Вольтова дуга . а) Обычная, гл. обр. постоянного тока, силой 5-20 А. С большим успехом она применяется для качественного анализа трудно сплавляемых минералов, которые вводятся в дугу в виде кусочков или тонко растертых порошков. Для количественного анализа металлов применение обычной вольтовой дуги имеет очень существенный недостаток, заключающийся в том, что поверхность анализируемых металлов покрывается пленкой окиси и горение дуги становится в конце концов неравномерным. Температура вольтовой дуги доходит до 5000-6000°С. б) Прерывистая дуга (Abreissbogen) постоянного тока силой 2-5 А при напряжении около 80 V. При помощи специального приспособления горение дуги прерывается 4-10 раз в сек. Этот способ возбуждения уменьшает окисление поверхности анализируемых металлов. При более высоком напряжении - до 220 V и силе тока 1-2 А - прерывистая дуга может применяться также и для анализа растворов. 3) Искровые разряды , получаемые при помощи индукционной катушки или, чаще, трансформатора постоянного или (предпочтительнее) переменного тока мощностью до 1 kW, дающего во вторичной цепи 10000-30000 V. Применяются три типа разрядов, а) Искровые разряды без емкости и индуктивности во вторичной цепи, называемые иногда дугой высокого напряжения (Hochspannungsbogen). Анализ жидкостей и расплавленных солей при помощи таких разрядов отличается большой чувствительностью. б) Искровые разряды с емкостью и индуктивностью во вторичной цепи, часто называемые также конденсированными искрами , представляют собой более универсальный источник энергии, пригодный для возбуждения спектров почти всех элементов (кроме щелочных металлов), а также газов. Схема включения дана на фиг. 1,

    где R - реостат в первичной цепи, Тr- трансформатор переменного тока, С 1 - емкость во вторичной цепи I, S - переключатель для изменения индуктивности L 1 , U - синхронный прерыватель, LF - искрогаситель, F - рабочий искровой промежуток. В резонанс ко вторичной цепи I при помощи индуктивности и переменной емкости С 2 настраивается вторичная цепь II; признаком наличия резонанса является наибольшая сила тока, показываемая миллиамперметром А. Назначение вторичной цепи II синхронного прерывателя U и искрогасителя LF - делать электрические разряды возможно однообразными как по характеру, так и по числу в течение определенного промежутка времени; при обычных работах такие добавочные приспособления не вводятся.

    При исследованиях металлов во вторичной цепи применяется ёмкость 6000-15000 см и индуктивность до 0,05-0,01 Н. Для анализа жидкостей во вторичную цепь иногда вводится водяной реостат с сопротивлением до 40000 Ом. Газы исследуются без индуктивности с небольшой емкостью. в) Разряды токов Тесла, которые осуществляются при помощи схемы, изображенной на фиг. 2,

    где V - вольтметр, А - амперметр, Т - трансформатор, С - емкость, Т-Т - трансформатор Тесла, F - искровой промежуток, куда вводится анализируемое вещество. Токи Тесла применяются для исследований веществ, которые имеют невысокую точку плавления: различных растительных и органических препаратов, осадков на фильтрах и т. п. При спектральном анализе металлов в случае большого их количества они обычно сами являются электродами, причем им придается какая-либо форма, например, из указанных на фиг. 3,

    где а - электрод из анализируемой толстой проволоки, b - из жести, с - согнутая тонкая проволока, d - диск, отрезанный от толстого цилиндрического стержня, е - форма, выпиливаемая из больших кусков литья. При количественном анализе необходимо иметь всегда одинаковую форму и размеры подвергающейся действию искр поверхности электродов. При небольшом количестве анализируемого металла можно воспользоваться оправой из какого-либо чистого металла, например, из золота и платины, в которой укрепляется анализируемый металл, как показано на фиг. 4.

    Для введения в источник света растворов предложено довольно много способов. При работе с пламенем применяется распылитель Люндегорда, схематически изображенный на фиг. 5 вместе со специальной горелкой.

    Продуваемый через распылитель ВС воздух захватывает испытуемую жидкость, наливаемую в количестве 3 -10 см 3 в углубление С, и в виде тонкой пыли относит ее в горелку А, где происходит смешение с газом. Для введения растворов в дугу, а также в искру применяются чистые угольные или графитовые электроды, на одном из которых делается углубление. Необходимо, однако, отметить, что очень трудно приготовить угли совершенно чистыми. Применяемые для очистки способы - попеременное кипячение в соляной и плавиковой кислотах, а также прокаливание в атмосфере водорода до 2500-3000°С - не дают углей, свободных от примесей, остаются (хотя и следы) Са, Mg, V, Ti, Al, Fe, Si, В. Удовлетворительной чистоты получаются также угли путем прокаливания их на воздухе при помощи электрического тока: через угольный стержень диаметром 5 мм пропускается ток силой около 400 А, и достигаемое таким путем сильное накаливание (до 3 000°С) оказывается достаточным для того, чтобы в течение нескольких секунд большинство загрязняющих угли примесей улетучилось. Существуют также такие способы введения растворов в искру, где сам раствор является нижним электродом, и искра проскакивает на его поверхность; другим электродом может служить какой-либо чистый металл. Примером такого устройства может служить изображенный на фиг. 6 жидкостный электрод Герляха.

    Углубление, куда наливается испытуемый раствор, облицовывается платиновой фольгой или покрывается толстым слоем позолоты. На фиг. 7 изображен аппарат Хитчена, служащий также для введения растворов в искру.

    Из сосуда А испытуемый раствор слабой струей поступает через трубку В и кварцевую насадку С в сферу действия искровых разрядов. Нижний электрод, впаянный в стеклянную трубку, прикрепляется к аппарату при помощи каучуковой трубки Е. Насадка С, изображенная на фиг. 7 отдельно, имеет с одной стороны вырез для стенания раствора. D - стеклянный предохранительный сосуд, в котором делается круглое отверстие для выхода ультрафиолетовых лучей. Сосуд этот удобнее делать кварцевым без отверстия. К верхнему электроду F, графитовому, угольному или металлическому, также приспосабливается предохраняющая от брызг пластинка. Для «дуги высокого напряжения», сильно накаливающей анализируемые вещества, Герлях при работе с растворами применяет электроды с охлаждением, как это схематически показано на фиг. 8.

    На толстой проволоке (диаметром 6 мм) укрепляется при помощи пробки К стеклянная воронка G, куда помещаются кусочки льда. На верхнем конце проволоки укрепляется круглый железный электрод Е диаметром 4 см и высотой 4 см, на который накладывается платиновая чашечка Р; последняя должна легко сниматься для очистки. Верхний электрод также д. б. толстым во избежание расплавления. При анализе небольших количеств веществ - осадков на фильтрах, различных порошков и т. д. - можно пользоваться приспособлением, изображенным на фиг. 9.

    Из испытуемого вещества и фильтровальной бумаги делается комочек, смачивается для лучшей проводимости раствором, например, NaCl, помещается на нижний электрод, состоящий иногда из чистого кадмия, заключенного в кварцевой (хуже стеклянной) трубочке; верхний электрод также является каким-либо чистым металлом. Для таких же анализов при работе с токами Тесла применяется специальная конструкция искрового промежутка, изображенная на фиг. 10 а и б.

    В круглом шарнире К укрепляется в нужном положении алюминиевая пластинка Е, на которую накладывается стеклянная пластинка G, а на последнюю - препарат Р на фильтровальной бумаге F. Препарат смачивается какой-либо кислотой или раствором соли. Вся эта система представляет небольшой конденсатор. Для исследования газов применяются закрытые стеклянные или кварцевые сосуды (фиг. 11).

    Для количественного анализа газов удобно пользоваться золотыми или платиновыми электродами, линии которых можно применить для сравнения. Почти все из упомянутых выше приспособлений для введения веществ в искру и дугу при работе укрепляются в специальных штативах. Примером может являться штатив Грамона, изображенный на фиг. 12:

    при помощи винта D электроды одновременно раздвигаются и сдвигаются; винт Е служит для передвигания верхнего электрода параллельно оптической скамье, а винт С - для боковых поворотов нижнего электрода; для боковых поворотов всей верхней части штатива служит винт В; наконец при помощи винта А можно поднимать или опускать всю верхнюю часть штатива; Н - подставка для горелок, стаканов и пр. Выбор источника энергии для той или иной цели исследования можно сделать, руководствуясь следующей примерной таблицей.

    Качественный анализ . При качественном спектральном анализе открытие какого-либо элемента зависит от многих факторов: от характера определяемого элемента, источника энергии, разрешающей способности спектрального аппарата, а также от чувствительности фотографических пластинок. Относительно чувствительности анализа можно сделать следующие указания. При работе с искровыми разрядами в растворах можно открывать 10 -9 -10 -3 %, а в металлах 10 -2 -10 -4 % исследуемого элемента; при работе с вольтовой дугой пределы открытия лежат около 10 -3 %. Абсолютное количество, которое м. б. открыто при работе с пламенем, составляет 10 -4 -10 -7 г, а при искровых разрядах 10 -6 -10 -8 г исследуемого элемента. Наибольшая чувствительность открытия относится к металлам и металлоидам - В, Р, С; меньше чувствительность для металлоидов As, Se и Те; галоиды, а также S, О, N в их соединениях совсем не м. б. открыты и м. б. открыты лишь в некоторых случаях в газовых смесях.

    Для качественного анализа наибольшее значение имеют «последние линии», и при анализе задача заключается в наиболее точном определении длин волн спектральных линий. При визуальных исследованиях длины волн отсчитываются по барабану спектрометра; эти измерения можно считать лишь приблизительными, так как точность составляет обычно ±(2-З) Ӑ и в таблицах Кайзера этому интервалу ошибок могут отвечать около 10 спектральных линий, принадлежащих различным элементам, для λ 6000 и 5000 Ӑ и около 20 спектральных линий для λ ≈ 4000 Ӑ. Гораздо точнее определяется длина волн при спектрографическом анализе. В этом случае на спектрограммах при помощи измерительного микроскопа измеряется расстояние между линиями с известной длиной волны и определяемой; по формуле Гартмана находится длина волны последней. Точность таких измерений при работе с прибором, дающим полоску спектра длиной около 20 см, составляет ± 0,5 Ӑ для λ ≈ 4000 Ӑ, ± 0,2 Ӑ для λ ≈ 3000 Ӑ и ± 0,1 Ӑ для λ ≈ 2500 Ӑ. По длине волны в таблицах находят соответствующий элемент. Расстояние между линиями при обычных работах измеряется с точностью до 0,05-0,01 мм. Этот прием иногда удобно комбинировать со съемками спектров с так называемыми заслонками Гартмана, два типа которых изображены на фиг. 13, а и b; при помощи их щель спектрографа можно делать различной высоты. Фиг. 13, с схематически изображает случай качественного анализа вещества X - установление в нем элементов А и В. Спектры фиг. 13, d показывают, что в веществе Y кроме элемента А, линии которого обозначены буквой G, имеется примесь, линии которой обозначены z. При помощи этого приема в простых случаях можно выполнить качественный анализ, не прибегая к промеру расстояний между линиями.

    Количественный анализ . Для количественного спектрального анализа наибольшее значение имеют линии, обладающие возможно большей концентрационной чувствительностью dI/dK, где I - интенсивность линии, а К - концентрация дающего ее элемента. Чем больше концентрационная чувствительность, тем точнее анализ. С течением времени разработан целый ряд методов количественного спектрального анализа. Эти методы следующие.

    I. Спектроскопические методы (без фотографической съемки) почти все являются фотометрическими методами. Сюда относятся: 1) Метод Барратта . Одновременно возбуждаются спектры двух веществ - испытуемого и стандартного - видные в поле зрения спектроскопа рядом, один над другим. Ход лучей изображен на фиг. 14,

    где F 1 и F 2 - два искровых промежутка, свет от которых проходит через призмы Николя N 1 и N 2 , поляризующие лучи во взаимно перпендикулярных плоскостях. При помощи призмы D лучи попадают в щель S спектроскопа. В его зрительной трубе помещается третья призма Николя - анализатор, - вращая которую добиваются одинаковой интенсивности двух сравниваемых линий. Предварительно при исследованиях стандартов, т. е. веществ с известным содержанием элементов, устанавливается зависимость между углом поворота анализатора и концентрацией, и по этим данным вычерчивается диаграмма. При анализе по углу поворота анализатора из этой диаграммы находится искомое процентное содержание. Точность метода ±10 %. 2) . Принцип метода заключается в том, что лучи света после призмы спектроскопа проходят через призму Волластона, где расходятся на два пучка и поляризуются во взаимно перпендикулярных плоскостях. Схема хода лучей показана на фиг. 15,

    где S - щель, Р - призма спектроскопа, W - призма Волластона. В поле зрения получаются два спектра B 1 и В 2 , лежащие рядом, друг над другом; L - лупа, N - анализатор. Если вращать призму Волластона, то спектры будут передвигаться относительно друг друга, что позволяет совместить какие-либо две их линии. Например, если анализируется железо, содержащее ванадий, то совмещается линия ванадия с какой-либо близлежащей одноцветной линией железа ; затем, поворачивая анализатор, добиваются одинаковой яркости этих линий. Угол поворота анализатора, как и в предыдущем методе, является мерой концентрации искомого элемента. Метод особенно пригоден для анализа железа, спектр которого имеет много линий, что позволяет всегда найти линии, пригодные для исследований. Точность метода ± (3-7)%. 3) Метод Оккиалини . Если расположить электроды (например, анализируемые металлы) горизонтально и проектировать изображен из источника света на вертикальную щель спектроскопа, то как при искровых, так и при дуговых разрядах линии примесей м. б. открыты в зависимости от концентрации на большем или меньшем расстоянии от электродов. Источник света проектируется на щель при помощи специальной линзы, снабженной микрометрическим винтом. При анализе эта линза передвигается и вместе с ней передвигается изображение источника света до тех пор, пока какая-либо линия примеси в спектре исчезнет. Мерой концентрации примеси является отсчет по шкале линзы. В настоящее время этот метод разработан также и для работ с ультрафиолетовой частью спектра. Надо отметить, что таким же способом освещения щели спектрального аппарата пользовался Локиер и им был разработан метод количественного спектрального анализа, т. н. метод «длинных и коротких линий». 4) Прямое фотометрирование спектров . Описанные выше методы носят название визуальных. Люндегорд вместо визуальных исследований пользовался для измерения интенсивности спектральных линий фотоэлементом. Точность определения щелочных металлов при работе с пламенем достигала ± 5%. При искровых разрядах этот способ неприменим, так как они менее постоянны, чем пламя. Существуют также способы, основанные на изменении индуктивности во вторичной цепи, а также использующие искусственное ослабление света, попадающего в спектроскоп, до исчезновения в поле зрения исследуемых спектральных линий.

    II. Спектрографические методы . При этих методах исследуются фотографические снимки спектров, причем мерой интенсивности спектральных линий является почернение, даваемое ими на фотографической пластинке. Интенсивность оценивается или глазом, или фотометрически.

    А . Методы без применения фотометрии . 1) Метод последних линий . При изменении концентрации какого-либо элемента в спектре изменяется число его линий, что дает возможность при неизменных условиях работы судить о концентрации определяемого элемента. Фотографируется ряд спектров веществ с известным содержанием интересующего компонента, на спектрограммах определяется число его линий и составляются таблицы, в которых указывается, какие линии видны при данных концентрациях. Эти таблицы служат дальше для аналитических определений. При анализе на спектрограмме определяется число линий интересующего элемента и по таблицам находится процентное содержание, причем метод дает не однозначную его цифру, а границы концентраций, т. е. «от-до». Наиболее достоверно возможно различить концентрации, отличающиеся друг от друга в 10 раз, например, от 0,001 до 0,01%, от 0,01 до 0,1% и т. д. Аналитические таблицы имеют значение лишь для вполне определенных условий работы, которые в различных лабораториях могут очень сильно различаться; кроме того, требуется тщательное соблюдение постоянства условий работы. 2) Метод сравнительных спектров . фотографируется несколько спектров анализируемого вещества А + х% В, в котором определяется содержание х элемента В, и в промежутках между ними на той же фотографической пластинке -спектры стандартных веществ А + а% В, А + b% В, А + с% В, где а, b, с - известное процентное содержание В. На спектрограммах по интенсивности линий В определяется, между какими концентрациями заключается значение х. Критерием постоянства условий работы является равенство интенсивности на всех спектрограммах какой-либо близлежащей линии А. При анализе растворов в них добавляется одинаковое количество какого-либо элемента, дающего линию близко к линиям В, и тогда о постоянстве условий работы судят по равенству интенсивности этих линий. Чем меньше разница между концентрациями а, Ь, с, … и чем точнее достигнуто равенство интенсивности линий А, тем точнее анализ. А. Райс, например, применял концентрации а, b, с, ... , относящиеся друг к другу, как 1: 1,5. К методу сравнительных спектров примыкает метод «подбора концентраций» (Testverfahren) по Гюттигу и Турнвальду, применимый только к анализу растворов. Он заключается в том, что если в двух растворах, содержащих а% А и х% А (х больше или меньше а), что сейчас же можно определить по их спектрам, то прибавляют в какой-либо из этих растворов такое количество n элемента А, чтобы интенсивность его линий на обоих спектрах стала одинаковой. Тем самым определится концентрация х, которая будет равна (а ± n)%. Можно также прибавить в анализируемый раствор какой-либо другой элемент В до равенства интенсивности определенных линий А и В и по количеству В оценить содержание А. 3) Метод гомологических пар . В спектре вещества А + а% В линии элементов А и В не являются одинаково интенсивными и, если этих линий достаточное количество, можно найти две такие линии А и В, интенсивность которых будет одинакова. Для другого состава А + b% В одинаковыми по интенсивности будут другие линии А и В и т. д. Эти две одинаковые линии называются гомологическими парами. Концентрации В, при которых осуществляется та или иная гомологическая пара, называются фиксирующими пунктами этой пары. Для работы по этому методу требуется предварительное составление таблиц гомологических пар при помощи веществ известного состава. Чем полнее таблицы, т. е. чем больше они содержат гомологических пар с фиксирующими пунктами, отличающимися как можно меньше друг от друга, тем точнее анализ. Этих таблиц составлено довольно большое количество, причем они могут иметь применение в любой лаборатории, т. к. точно известны условия разрядов при их составлении и эти условия м. б. совершенно точно воспроизведены. Достигается это при помощи следующего простого приема. В спектре вещества А + а% В выбираются две линии элемента А, интенсивность которых очень сильно меняется в зависимости от величины самоиндукции во вторичной цепи, именно одна дуговая (принадлежащая нейтральному атому) и одна искровая линия (принадлежащая иону). Эти две линии называются фиксирующей парой . Путем подбора величины самоиндукции линии этой пары делаются одинаковыми и составление ведется именно при этих условиях, всегда указываемых в таблицах. При таких же условиях проводится и анализ, и по осуществлению той или иной гомологической пары находится процентное содержание. Имеется несколько модификаций метода гомологических пар. Из них главнейшим является метод вспомогательного спектра , применяемый в том случае, когда элементы А и В не обладают достаточным количеством линий. В этом случае линии спектра элемента А определенным образом связываются с линиями другого, более пригодного элемента G, и роль А начинает играть элемент G. Метод гомологических пар разработан Герляхом и Швейтцером. Он применим как к сплавам, так и к растворам. Его точность в среднем около ±10%.

    В . Методы с применением фотометрии . 1) Метод Барратта . Фиг. 16 дает представление о методе.

    F 1 и F 2 - два искровых промежутка, при помощи которых одновременно возбуждаются спектры стандартного и анализируемого вещества. Свет проходит через 2 вращающихся сектора S 1 и S 2 и при помощи призмы D образует спектры, которые расположены один над другим. Путем подбора вырезок секторов линии исследуемого элемента получают одинаковую интенсивность; концентрация определяемого элемента вычисляется из соотношения величин вырезок. 2) является аналогичным, но с одним искровым промежутком (фиг. 17).

    Свет от F разделяется на два пучка и проходит через секторы S 1 и S 2 , при помощи ромба Гюфнера R две полоски спектра получаются одна над другой; Sp - щель спектрографа. Вырезки секторов изменяются до получения равенства интенсивности линии примеси и какой-либо близлежащей линии основного вещества и по соотношению величин вырезок высчитывается %-ное содержание определяемого элемента. 3) При применении в качестве фотометра вращающегося логарифмического сектора линии получают на спектрограммах клинообразный вид. Один из таких секторов и его положение относительно спектрографа при работе изображены на фиг. 18, а и б.

    Вырезка сектора подчиняется уравнению

    - lg Ɵ = 0,3 + 0,2l

    где Ɵ - длина дуги в частях полной окружности, находящаяся на расстоянии I, измеренном в мм по радиусу от его конца. Мерой интенсивности линий является их длина, т. к. с изменением концентрации элемента длина его клинообразных линий также изменяется. Предварительно по образцам с известным содержанием строится диаграмма зависимости длины какой-либо линии от %-ного содержания; при анализе на спектрограмме измеряется длина той же линии и по диаграмме находится процентное содержание. Имеется несколько различных модификаций этого метода. Следует указать на модификацию Шейбе, применявшего т. н. двойной логарифмический сектор. Вид этого сектора изображен на фиг. 19.

    Линии исследуются затем при помощи специального аппарата. Точность, достижимая при помощи логарифмических секторов, ±(10-15)%; модификация Шейбе дает точность ±(5-7)%. 4) Довольно часто применяется фотометрирование спектральных линий при помощи свето- и термоэлектрических спектрофотометров самых различных конструкций. Удобными являются термоэлектрические фотометры, выработанные специально для целей количественного анализа. Для примера на фиг. 20 приведена схема фотометра по Шейбе:

    L– постоянный источник света с конденсором К, М – фотографическая пластинка с исследуемым спектром, Sp - щель, О 1 и О 2 - объективы, V - затвор, Th - термоэлемент, который присоединяется к гальванометру. Мерой интенсивности линий является отклонение стрелки гальванометра. Реже пользуются саморегистрирующими гальванометрами, дающими запись интенсивности линий в виде кривой. Точность анализа при применении этого типа фотометрии составляет ±(5-10)%. При сочетании с другими методами количественного анализа точность м. б. повышена; так, например, метод трех линий Шейбе и Шнеттлера, являющийся сочетанием метода гомологических пар и фотометрических измерений, в благоприятных случаях может дать точность ±(1-2)%.

    Наибольшим спросом у Заказчиков услуг Испытательного центра пользуются исследования химического состава металлов и сплавов, которые проводит лаборатория "Спектральных, химико-аналитических исследований и эталонных образцов" . Аналитическое оборудование лаборатории позволяет с высочайшей точностью определять (качественно и количественно) практически все элементы периодической таблицы таблицы Д.И. Менделеева.

    Воспользовавшись услугами лаборатории "Спектральных, химико-аналитических исследований и эталонных образцов" Испытательного центра, Вы сможете :

    Определить химический состав металлов, сплавов, лигатур, керамических материалов, что позволит идентифицировать марку, соответствие ГОСТ или ТУ;

    Определить количественное содержание серы и углерода в сплавах и сталях;

    Определить количественное содержание легирующих элементов в сталях и сплавах;

    Определить количественное содержание микропримесей в сталях и сплавах;

    Определить содержание кислорода и азота в сплавах и сталях;

    Провести контроль качества партий материалов и изделий;

    Получить инженерно-техническую и технологическую консультации.

    При проведении исследований мы используем следующее аналитическое оборудование:

    Масс-спектрометры c индуктивно связанной плазмой XSeries-2 и ICAP-Qc;

    Оптико-эмиссионный спектрометр Magellan Q8;

    Газоанализаторы LECO серии 600;

    Атомно-эмиссионные спектрометры с индуктивно связанной плазмой VARIAN-730 ES, OPTIMA 8300 (производства фирмы Perkin Elmer);

    Рентгенофлуоресцентные спектрометры S4 EXPLORER и S8 TIGER;

    Оптико-эмиссионный спектрометр ARL 4460;

    Атомно-абсорбционный спектрометр VARIAN-240 FS.

    Наименование испытаний и исследований

    НАИМЕНОВАНИЕ испытаний/исследований оборудование нормативно-техническая документация

    ХИМИЧЕСКИЙ АНАЛИЗ

    Химический анализ. Никелевые
    жаропрочные сплавы (легирующие
    элементы)

    Спектрометр ПЭ-5400В

    ОСТ 90128-142-96, ОСТ 190429-433-96, ГОСТы 24018.0-24018.8,
    ГОСТы 6689.1-6689.22, ГОСТ 12344-12365, ГОСТ 17051-82

    Атомно-абсорбционный анализ
    сталей и никелевых сплавов
    (легирующие элементы)

    Атомно-абсорбционный
    спектрометр Varian 240FS

    МВИ 1.2.011-2009, ГОСТ Р ИСО 4940-2010, ГОСТ Р ИСО 4943-2010,
    ГОСТы 6689.1-6689.22, ГОСТ 6689.24, ГОСТы 22536.3-22536.12, ГОСТ 22536.14,
    ГОСТ Р 50424, ГОСТ 12346-12365

    Атомно-абсорбционный анализ
    легких сплавов на основах Ti, Al, Mg
    (легирующие элементы +
    макропримеси)

    Атомно-абсорбционный
    спектрометр Varian 240FS
    ГОСТ 11739.1-11739.24, ГОСТ 3240.0-3240.21, ГОСТ 19863.1-19863.16

    Атомно-эмиссинный анализ
    никелевых сплавов и сталей
    (легирующие
    элементы+макропримеси)

    Атомно-эмиссионный
    спектрометр Varian 730-ES

    ГОСТ 6012-98, ГОСТ Р ИСО 13898-2-2006, ГОСТ Р ИСО 13898-3-2007,
    ГОСТ Р ИСО 13898-4-2007, ГОСТ Р ИСО 13899-2-2009, ГОСТ Р 51056-97,
    ГОСТ Р 51927-2002

    Атомно-эмиссинный анализ легких
    сплавов на основах Al, Ti, Mg
    (легирующие
    элементы+макропримеси)

    Атомно-эмиссионный
    спектрометр Varian 730-ES

    ГОСТ 11739.0-11739.24, ГОСТ 9853.24

    Определение массовой доли
    двуокиси кремния в исходном
    продукте и готовом гидролизованном
    растворе этилсиликата ЭТС-40

    Весы AND HR-200 ГОСТ 26371-84

    Определение продолжительности
    гелеобразования в готовом
    гидролизованном растворе
    этилсиликата ЭТС-40

    Термостат ГОСТ 26371-84

    Определение содержания ионов Cl,
    SO??

    Анализатор жидкости
    ЭКОТЕСТ-2000

    ГОСТ 9.902-81

    Определение рН среды (электролиты)

    Измеритель
    комбинированный Seven
    Easy pH (рН-метр

    ОСТ 1 90188-90193-90, ОСТ 1 90388-90392-90

    Определение рН среды (ткани,
    волокна, герметики)

    Измеритель
    комбинированный Seven
    Easy pH (рН-метр)

    ГОСТ 9.902-81

    СПЕКТРАЛЬНЫЙ АНАЛИЗ

    Спектральный анализ.Никелевые
    жаропрочные сплавы (12 элементов
    легирующие) и стали

    Оптико-эмиссионный
    спектрометр ARL-4460

    ПИ 1.2.417-89, ГОСТ 6012-98, ГОСТ 18895, МВИ 1.2.003-2009, МВИ 1.2.001-2009

    Спектральный анализ. Никелевые
    сплавы типа: ВЖЛ8, ЭИ698, Э44376,
    ВКН4У, ЖС47 (12 элементов
    легированные) и сталей

    Рентгенофлюоресцентный
    спектрометр S4EXPLORER

    ГОСТ 28033-89, МВИ 1.2.015-2011

    Спектральный анализ легких сплавов
    на основах Al, Ti, Mg

    Рентгенофлюоресцентный
    спектрометр S4EXPLORER

    ГОСТ 7727, ГОСТ 7728


    для количественного анализа сплавов

    Рентгенофлюоресцентный
    спектрометр S4EXPLORER

    ГОСТ 7727, ГОСТ 7728

    ГАЗОВЫЙ АНАЛИЗ


    стали (углерод, сера)

    Газоанализатор CS-600

    ГОСТ 24018.7-24018.8

    Газовый анализ. Никелевые сплавы и
    стали (кислород, азот)

    Газоанализатор ТС-600

    ГОСТ 17745-90, МВИ 1.2.006-2009

    Газовый анализ. Никелевые сплавы и
    стали (водород)

    Газоанализатор RHEN-600 ГОСТ 17745-90


    (углерод, сера)

    Газоанализатор CS-600

    ГОСТ 24018.7-24018.8

    Газовый анализ. Титановые сплавы
    (кислород, азот)

    Газоанализатор ТС-600

    ГОСТ 28052-91, ГОСТ 17745-90

    Газовый анализ. Титановые сплавы
    (водород)

    Спектрограф ИСП-51

    ОСТ 1 90034-81, ММ 1.595-21-146-2002

    Масс-спектрометрический анализ
    шихтовых материалов на основах Ni,
    Co, Cr, W, Mo (входной контроль
    примеси)

    Масс-спектрометр X
    SERIES2

    Масс-спектрометрический анализ.
    Жаропрочные никелевые сплавы и
    стали (микропримеси)

    Масс-спектрометр X
    SERIES2

    МВИ 1.2.009-2009, МВИ 1.2.010-2009

    Масс-спектрометрический анализ
    легких сплавов на основах Al, Ti, Mg
    (микропримеси)

    Масс-спектрометр X
    SERIES2

    МВИ 1.2.009-2009, МВИ 1.2.010-2009

    ЭМИССИОННЫЙ АНАЛИЗ

    Эмиссионный анализ сплавов на
    основах Al, Ti, Mg (+ макропримеси)

    Оптико-эмиссионный
    спектрометр Q8 Magellan

    Создание аналитической программы
    для количественного анализа легких
    сплавов

    Оптико-эмиссионный
    спектрометр Q8 Magellan

    ГОСТ 7727, ГОСТ 7728, ГОСТ 23902