• Что можно приготовить из кальмаров: быстро и вкусно

    Ненасыщенные полиэфирные смолы, используемые в армиро­ванных пластиках, являются продуктами взаимодействия реак­ционно-способных полимеров и мономеров. этой комбинации была предложена К. Эллисом в 30-х годах, который обнаружил, что ненасыщенные полиэфирные смолы, полученные при взаимо­действии гликолей с малеиновым ангидридом, отверждаются в нерастворимый твердый материал при добавлении перекисного инициатора. Эллис запатентовал это открытие в 1936 г. .

    Позднее Эллис обнаружил, что более ценные продукты могут быть получены при взаимодействии ненасыщенной полиэфирной алкидной смолы с такими мономерами, как винилацетат или стирол. Введение мономеров значительно снижает вязкость смолы, что облегчает добавление инициатора в систему и позволяет про­водить процесс отверждения энергичнее и полнее. При этом по­лимеризация смеси проходит быстрее, чем каждого компонента в отдельности. Право на этот процесс было заявлено в 1937 г.; он запатентован в 1941 г. . Новые материалы отвечали опре­деленным потребностям промышленности . В настоящее время, более чем 40 лет спустя, ежегодное ненасы­щенных полиэфирных смол в США достигло ~0,5 млн. т .

    Ненасыщенные полиэфирные смолы обладают разнообразными свойствами. При комнатной температуре жидкие смолы стабильны в течение многих месяцев и даже лет, но при добавлении перекис­ного инициатора затвердевают за несколько минут. Отверждение происходит в результате реакции присоединения и превращения двойных связей в простые; при этом не образуется никаких побоч­ных продуктов. В качестве присоединяющегося мономера чаще всего используют стирол. Он взаимодействует с реакционно- способными двойными связями полимерных цепей, сшивая их в прочную трехмерную структуру. Реакция отверждения про­ходит с выделением теплоты, которая в свою очередь способ­ствует более полному протеканию процесса. Установлено, что обычно при отверждении смолы в реакцию вступает около 90 % имеющихся в полимере двойных связей. 28

    Полиэфирные смолы используют в производстве большого числа изделий, включая лодки, строительные панели, детали автомобилей и самолетов, рыболовные удилища и клюшки для гольфа. Около 80 % полиэфирных смол, производимых в США, используют с армирующими наполнителями, в основном со стек­ловолокном. Неармированные полиэфирные смолы применяют в производстве пуговиц, мебели, искусственного мрамора и ку­зовной шпатлевки.

    В отличие от большинства других пластиков, которые состоят из одного ингредиента, полиэфирные смолы, используемые в АП; содержат несколько компонентов (смола, инициатор, наполни­тель и активатор). Как химическая природа, так и соотношение этих компонентов могут варьироваться, что позволяет получать большое число различных типов полиэфирных смол. При созда­нии любой полиэфирной смолы стараются придать ей свойства, необходимые для конкретного применения.

    В качестве источника реакционноспособных двойных связей для большого числа ненасыщенных полиэфирных смол исполь­зуют малеиновый ангидрид. При его взаимодействии с глико - лями (обычно применяют пропиленгликоль) образуются линейные полиэфирные цепи с молекулярной массой -1000 ... 3000. Не­смотря на меньшую стоимость этиленгликоля по сравнению со стоимостью пропиленгликоля, первый используется лишь для получения нескольких специальных смол. Это связано с плохой совместимостью полиэфиров на основе этиленгликоля со стиро­лом. В процессе этерификации цис-конфигурация малеинового ангидрида переходит в фумаровую трансструктуру. Это оказы­вается полезным в связи с большей реакционной способностью двойных связей фумарового фрагмента в реакции со стиролом. Таким образом, высокая степень изомеризации в трансструктуру является важным фактором при получении реакционноспособных полиэфирных смол . Несмотря на высокую степень изомериза­ции малеинового ангидрида, которая достигает более 90 %, для получения полиэфирных смол с повышенной реакционной способ­ностью используют более дорогую фумаровую кислоту.

    Другие двухосные кислоты или ангидриды, такие, как ади - пиновая и изофталевая кислоты или фталевый ангидрид, часто добавляются к основному реагенту для измерения конечных свойств смолы и регулирования числа двойных связей. Типичная структура полиэфирной смолы приведена ниже (где ^ - алкиль - ная или арильная группа модифицирующей двухосновной кис­лоты или ангидрида):

    О О СН3 О О СН3 И

    Н [О-С-R-С-О-СН-СН2-О-С-СН=СН-С-О-СН-сн2 Jn он.

    Благодаря разнообразным свойствам и низкой стоимости по­лиэфирные смолы широко используются для получения различ­ных изделий. Однако переработчикам недостает знания химии полиэфирных смол, поэтому им необходима постоянная техниче­ская помощь. Поставщики полимерных смол обеспечивают потре­бителей полной информацией по типам смол, технологии изго­товления, ценам и свойствам. Поставщики инициаторов также дают необходимые консультации по использованию их продуктов в сочетании с различными активаторами и ингибиторами.

    Быстрое развитие исследований и применение материалов, полученных намоткой, привело к созданию большого числа специ­фикаций и стандартов на методы их испытаний. Следующие стан­дарты ASTM представляют собой интерес: ASTM D2290-76. Определение предела …

    Ряд испытаний должен проводиться при повышенных темпера­турах. Зависит это от типа композиционного материала и области его применения. Обычные композиты не должны терять проч­ность и модуль после получасовой экспозиции при темпера­туре …

    Показатель Исходные значения После выдерж­ки на глубине 1737 м в тече­ние 1045 сут Показатель Исходные значення После выдерж­ки на глубине 1737 м в тече­ние 1045 сут А0Ж(МПа £сш, ГПа …

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Глава 1. Насыщенные полиэфирные смолы: свойства и применение

    Насыщенные полиэфирные смолы могут иметь различные составы, высокую или низкую молекулярные массы, быть линейными или разветвленными, твердыми или жидкими, эластичными или жесткими, аморфными или кристаллическими. Такая изменчивость в сочетании с хорошей устойчивостью к воздействию света, влаги, температуры, кислороду и многим другим веществам является причиной того, что насыщенные полиэфирные смолы играют важную роль в качестве пленкообразующих веществ для ЛКМ. Помимо этого, насыщенные полиэфирные смолы используются в различных областях промышленности, таких как производство стеклопластиков, пластмассовых изделий, полиуретанов, искусственного камня и пр.

    Свойства НПС и технические характеристики

    Синтетические полиэфирные смолы представляют собой синтетические полимеры. Свое название они исторически получили благодаря тому, что первоначально синтезированные полимеры по структуре и свойствам сходны были с природными смолами, такими как шеллак, канифоль и др. Вещества, которые объединены названием "смолы", имеют аморфную структуру и состоят из родственных молекул неодинакового размера и разной структуры (гомологов и изомеров). Смолы - хорошие диэлектрики. Для них типично отсутствие определенной температуры плавления (постепенный переход из твердого состояния в жидкое), нелетучесть, растворимость в органических растворителях, нерастворимость в воде, способность образовывать пленки при испарении растворителя.

    Изучение насыщенных полиэфиров началось в 1901 году с получением “глифталевой смолы”, состоящей из глицерина и фталевого ангидрида. Промышленное производство этих алкидных смол началось в 1920-х гг. в США. Дальнейшее развитие производства насыщенных полиэфирных смол для красок и других целей значительно зависит от изучения новых видов сырья.

    Насыщенные полиэфирные смолы также иногда называются алкидными смолами, не содержащими жирнокислотных радикалов (oil-free alkyds), поскольку они содержат большинство компонентов, используемых в традиционных алкидных смолах за исключением жирнокислых радикалов.

    Структура НПС, используемых в производстве ЛКМ, может быть разветвленная или неразветвленная (линейная). Предпочтительная структура смол в этом случае - аморфная (для достижения лучшей способности к растворению).

    Рассмотрим основные характеристики насыщенных полиэфирных смол, применяемых в производстве ЛКМ.

    Молекулярная масса

    Сополимеры с большой молекулярной массой (10000-30000) обычно имеют линейную структуру. Они образуются из терефталевой и изофталевой кислот, алифатических дикарбоновых кислот и различных диолов. Хорошая растворимость в обычных растворителях достигается подбором соответствующей рецептуры краски. В некоторых случаях (лаки для фольги, полиграфические краски и др.) полиэфиры с большой молекулярной массой используются как пленкообразующие вещества, высыхаемые физическим способом. Однако оптимальные свойства пленок краски получаются только при модификации со структурообразующими смолами. Особые кристаллические полиэфиры с большой молекулярной массой измельчают и используют как порошковые краски, которые в последнее время все чаще находят применение не только в окраске готовых изделий, но и в покрытии рулонного и листового металла.

    Для обычных ЛКМ применяются полиэфиры с Мr 1500-4000. Линейные полиэфиры с низкой молекулярной массой могут иметь молекулярную массу до 7000; разветвленные полиэфиры имеют молекулярную массу до 5000. Такие смолы не пригодны для получения красок, сушка которых происходит физическим способом. Их следует рассматривать как преполимеры для реакционных систем со структурообразующими смолами. Классы преполимеров и применение представлены в таблице.

    Температура стеклования . Температура стеклования Тg полиэфирных смол может изменяться при помощи подбора соответствующих алифатических сырьевых материалов. Тg непластифицированных ароматических сополиэфиров составляет примерно 70°С, а сополиэфиров, образованных из циклоалифатических гликолей, превышает 100°С. Алифатические полиэфиры с длинными метиленовыми цепями между эфирными группами имеют Тg ниже - 100°С. Для процесса койл-коутинга предпочтительнее использование смол с температурой перехода из высокоэластичного состояния в стеклообразное более 45°С. Смола, имеющая температуру перехода более 45°С, имеет неупорядоченную (аморфную) структуру и растворима в большом числе органических растворителей.

    Растворимость, кристалличность и совместимость . Растворимость полиэфира в значительной степени определяется природой и количественным соотношением входящих в него мономеров. Полиэфиры с упорядоченной структурой являются кристаллическими. Примерами сильно кристаллизованных полиэфиров являются полиэтиленгликольтерефталат и полибутилентерефталат. Хотя средне или сильно кристаллизованные сополимеры нерастворимы в растворителях, их можно применять в порошковых красках. Слабо кристаллизованные сополимеры растворяются, например, в кетонах и используются главных образом для получения многослойных клеев.

    Низкая молекулярная масса и низкая Тg благоприятно отражаются на совместимости полиэфирных смол с другими пленкообазующими веществами (акриловыми, эпоксидными, аминосмолами, сложными эфирами целлюлозы). Не все НПС совместимы между собой. Например, полиэфиры, полученные на основе фталевой кислоты, не всегда совместимы с другими НПС.

    В таблице сведены основные характеристики НПС и оценены их преимущества и недостатки как сырья для производства покрытий для рулонного металла.

    Основные характеристики насыщенных полиэфирных смол, применяемых для производства покрытий для рулонного металла (coil/can coating)

    Технические характеристики выпускаемых смол (спецификация) должны включать в себя такие основные параметры, как вязкость, кислотное число, гидроксильное число, содержание твердого вещества, цвет (по цветовой шкале Гарднера), растворители. Дополнительными параметрами, указываемыми в спецификации, могут быть плотность продукта, температура воспламенения, температура стеклования, молекулярный вес, содержание нелетучих веществ. Также указываются эксплуатационные характеристики и области применения продукта. В спецификации приводятся методы испытаний/стандарты, по которым определялись показатели.

    В зависимости от назначения полиэфирных смол, коэффициент кислотности может быть от 0 до 100 мг KOH/г, гидроксидное число - от 0 до 150 мг KOH/г.

    Примерные технические характеристики НПС, выпускаемых для койл-коатинга, можно представить следующим образом:

    Технические характеристики НПС

    * Приведен интервал значений для наиболее известных смол европейского и китайского производства. В спецификации к каждой смоле указывается интервал значений, соответствующий ее характеристикам (3.5-4.5 Пас, 100-120 мг КОН/г и т.п.)

    В зависимости от технологических характеристик линии по покраске металла, а также свойств конечного продукта, которые планируется получить, выбираются смолы, на основе которых выпускаются соответствующие ЛКМ. В частности, принимаются во внимание температура отверждения, совместимость с другими компонентами ЛКМ, устойчивость к воздействиям, в условии которых планируется эксплуатировать изделие из окрашенного рулонного металла.

    Характеристики смолы также определяют тип ЛКМ, который будет получен на его основе. Это могут быть грунтовки, эмали, краски, предназначенные для различных этапов покрытия рулонного металла (см. главу, посвященную описанию процесса койл-коатинга).

    Структурообразование НПС

    НПС, используемые в производстве лакокрасочных материалов, в большинстве случаев должны быть структурированы путем смешения со структурообразующими амино-, меламино-, бензогуанаминовыми или эпоксидными смолами. По этой причине рецептуры смол могут включать в себя следующие химические соединения, сшивающие линейные полимеры: аминогруппы, изоцианатные группы и эпоксидные группы. Выбор группы зависит от конечного применения смол.

    Структурообразование также возможно при использовании катализатора. В случае необходимости структурообразования при комнатной температуре, в качестве сшивающего агента используются полиизоционатные смолы.

    Аминосмолы, модифицированные формальдегидом (меламиновые, бензогуанаминовые смолы и полимочевина) являются наиболее важными смолами, используемыми для термического отверждения полиэфирных смол, содержащих функциональную гидроксильную группу. В отечественной промышленности материалы на основе амино - и полиэфирных смол носят название олигоэираминоформальдегидные смолы. Соотношение полиэфир/аминосмола обычно между 95: 5 и 60: 40 (на 100% полиэфира).

    Примеры соединений, содержащих эпоксидные группы - дифенилолпропан А эпоксидных смол (например Epikote 828™, Epikote 1001™ and Epikote 1004™, производитель Shell), гидрогенизованный дифенилолпропан А эпоксисоединений, алифатитеские эпоксисоединения, эпоксидированные алкиды, эпоксидированные масла (например эпоксидированное льняное масло или соевое масло), эпоксидорованные бораты и триглицидил изоцианурат. Соотношение карбоксил: эпоксид обычно между 0,85: 1 и 1: 0,85. В порошковых покрытиях обычно применяется термическое отверждение карбоксифункциональных полиэфирных смол с эпоксидными смолами (данные смеси получили название гибридных смол).

    Примеры соединений, сшивающих линейные полиэфиры, содержащих изоцианатные группы - гексаметилендиизоцианат ((HDI),

    толуилендиизоцианат (TDI), изофорон диизоцианат (IPDI), тетраметилксилен диизоцинат (TMXDI), 3,4 изоцианатметил-1метил-циклогексилизоцианат (IMCI), их димеры и триммеры. Комбинирование полиэфирных и полиизоцианатных смол дает двухкомпонентные полиуретановые краски.

    Катализаторы (например, бензилтиметиламминийхлорид или 2-метилимидазол) используются для ускорения реакции термического отверждения. Катализаторы для отверждения полиэфирной смолы - сильные кислоты, такие как сульфокислота, моно - и диалкил кислая соль фосфорной кислоты, бутилфосфат и бутилмалеат.

    Содержание катализатора обычно от 0,1 до 5 % (в зависимости от смолы).

    Глава 2. Полиэфирные смолы: свойства, сырье, производство

    Смеси указанных олигоэфиров и растворы их в способных сополимеризоваться мономерах (стирол, метилметакрилат, диаллилфталат и др.) обычно также называются полиэфирными смолами. Олигоэфиры получают поликонденсацией в расплаве или инертном растворителе: полималеинаты из малеиновой кислоты HOOCCH = CHCOOH или её ангидрида (иногда в смеси с др. дикарбоновой кислотой или ангидридом) и гликоля; олигоэфиракрилаты из ненасыщенной монокарбоновой кислоты [обычно акриловой CH2=CHCOOH или метакриловой CH2=C (CH3) COOH], гликоля и дикарбоновой кислоты. В приведённых выше формулах А и А" - двухвалентные остатки, входящие в состав молекул гликоля и дикарбоновой кислоты соответственно; Х=-Н, - СНз или - Cl; х = 1-5; у = 0-5; n = 1-20. В качестве гликолей чаще всего используют этилен-, диэтилен-, триэтилен - и 1,2-пропиленгликоли; иногда (главным образом при получении олигоэфиракрилатов) гликоли частично или полностью заменяют глицерином, пентаэритритом или ксилитом. В качестве дикарбоновых кислот применяют адипиновую кислоту, себациновую, фталевую, изофталевую, терефталевую, тетрахлорфталевую и др. Ненасыщенные олигоэфиры - вязкие жидкости или твёрдые вещества с температурой размягчения 30-150°С, молекулярной массой 300-3000, плотностью 1,1-1,5 г/см3 (20°C). Большую часть полиэфирных смол применяют в качестве связующих для стеклопластиков. Кроме того, их широко используют для приготовления лакокрасочных материалов, в качестве полимерных компаундов для заливки деталей радио - и электротехнического оборудования, для пропитки пористых металлических отливок с целью их герметизации, а также для получения галантерейных изделий и др. Полиэфирные смолы применяют и как основу композиций для наливных полов, замазок и клеев для склеивания стеклопластиков между собой, а также с асбоцементными и древесноволокнистыми плитами, сотопластами и др. материалами.

    Сырье для получения сложных полиэфиров

    Наиболее широкое применение для получения полиэфиров получили гликоли (этиленгликоль, 1,2-пропиленгликоль, диэтиленгликоль, триэтиленгликоль), - глицерин, бисфенолы (дифенилолпропан), пентаэритрит, а также двухосновные кислоты (фумаровая, терефталевая, адйпиновая, себациновая) и их ангидриды (фталевый, малеиновый).

    Этиленгликоль - бесцветная, малоподвижная жидкость, т. кип. 197,6°С, т. пл. - 12,3°С, плотность 1113 кг/м3. Этиленгликоль в промышленности получают гидратацией окиси этилена в присутствии серной кислоты или омылением 1,2-дихлорэтана. Пропиленгликоль - бесцветная вязкая жидкость, т. кип.187,4°С, т. пл. - 50°С, плотность 1036 кг/м3. Промышленный способ получения 1,2-пропиленгликоля - гидратация окиси пропилена.

    Диэтиленгликоль - бесцветная вязкая жидкость". т. кип.247°С, т. пл. - б°С, плотность 1180 кг/м3. В промышленности диэтиленгликоль получают взаимодействием этиленгликоля с окисью этилена или этиленгликоля с этиленхлоргидрином:

    Триэтиленгликоль - бесцветная вязкая жидкость, т. кип.290°С, т. пл. - 5 ?С, плотность 1120 кг/м3. В промышленности триэтиленгликоль получают из этиленгликоля и окиси этилена. Все гликоли гигроскопичны, в любых соотношениях смешиваются с водой и этиловым спиртом.

    Глицерин - сиропообразная бесцветная сладкая на вкус жидкость, т. кип.290 ?С, т. пл.17,9 ?С, плотность 1264 кг/м3. Глицерин очень гигроскопичен и смешивается с водой и спиртами в любых соотношениях. В промышленности глицерин получают расщеплением жиров, а также синтезом из пропилена. Синтез глицерина на основе пропилена является более перспективным методом, так как не требует расхода пищевого сырья.

    Пентаэритрит - бесцветное кристаллическое вещество, т. пл.263,5?С, плотность 1397 кг/м3, растворимость в воде 7,1% при 25 ?С. Пентаэритрит получают взаимодействием ацетальдегида с формальдегидом в водном растворе в присутствии щелочи.

    Адипиновая кислота - бесцветные кристаллы, т. пл.149-150°С, т. кип.265°С при 13,3 кПа; растворима в этиловом спирте, в воде при 15?С растворяется примерно 1,5% адипиновой кислоты.

    Основными промышленными методами получения адипиновой кислоты являются:

    окисление циклогексанола азотной кислотой или кислородом в присутствии солей марганца или через ее ангидрид, синтезируемый карбонилированием тетрагидрофурана.

    Себациновая кислота представляет собой бесцветные кристаллы, т. пл.134,5°С, т. кип.294,5°С при 13,3 кПа, плотность 1027 кг/м3; хорошо растворима в спирте, диэтиловом эфире, в воде при 15°С растворяется примерно 0,1% себациновой кислоты.

    В промышленности себациновую кислоту получают сухой перегонкой продуктов щелочного расщепления касторового масла, окислением циклодекана азотной кислотой, электролизом натриевых солей монометилового или моноэтилового эфира адипиновой кислоты.

    Фумаровая кислота представляет собой бесцветное кристаллическое вещество, т. пл.287°С (в запаянном капилляре), т. кип.290°С, плотность 1635 кг/м3. Плохо растворяется в воде и почти во всех других растворителях. Получается кипячением 30-40% -ного водного раствора малеиновой кислоты с соляной кислотой.

    Терефталевая кислота (n-фталевая) - бесцветные кристаллы, т. пл.425°С (в запаянном капилляре). Растворима в пиридине и диметилформамиде, нерастворима в воде. Получают терефталевую кислоту окислением ft-ксилола или и-толуиловой кислоты. Для синтеза полиэфиров чаще применяют диметиловый эфир терефталевой кислоты.

    Диметилтерефталат - бесцветные кристаллы, т. пл.141-142°С, плотность 1630 кг/м3. Растворяется в диэтиловом эфире, умеренно - в горячем этиловом спирте. Диметилтерефталат получают при пропускании хлористого водорода в суспензию терефталевой кислоты в метаноле или при нагревании терефталевой кислоты с метанолом в присутствии серной кислоты.

    Фталевый ангидрид - бесцветные кристаллы, т. пл.130,8°С, т. кип.284,5°С, плотность 1527 кг/м3; легко возгоняется. В холодной воде почти не растворяется, горячей гидролизуется в ортофталевую кислоту. Умеренно растворим в органических растворителях. Фталевый ангидрид получают окислением над нафталина или оксилола в газовой фазе.

    Малеиновый ангидрид - бесцветные кристаллы, т. пл.52,8°С, т. кип. 200°С:

    При растворении в воде дает малеиновую кислоту, в спиртах - диалкилмалеинаты; хорошо растворяется в диоксане, ацетоне, этилацетате, хлороформе.

    Малеиновый ангидрид получают окислением в паровой фазе бензола или фурфурола.

    Свойства и способы производства ненасыщенных полиэфиров

    В первую очередь, основным предметом Исследования являются ненасыщенные полиэфиры. Среди них широкое практическое применение нашли полиалкиленгликольмалеинаты и полиалкиленгликольфумараты, а также полиэфиракрилаты. При получении полиалкиленгликольмалеинатов и полиалкиленгликольфумаратов для регулирования их свойств часть ненасыщенной кислоты обычно заменяют так называемыми модифицирующими кислотами или их ангидридами: адипиновой, себациновой, терефталевой и др., фталевым, тетра - гексагидрофталевыми и другими ангидридами. Насыщенные двухосновные кислоты (адипиновая и др.) повышают ударную вязкость отвержденных полиэфиров, причем это возрастание тем существенней, чем длиннее цепь кислоты. Ароматические кислоты (ангидриды) увеличивают теплостойкость и прочность полиэфиров. Ангидриды галогенсодержащих ароматических кислот к тому же снижают горючесть, полиэфиров. Часто с этой целью используют тетрахлорфталевый или хлорэндиковый ангидрид, который представляет собой продукт взаимодействия гек-сахлорциклопеитадиена с малеиновым ангидридом.

    В зависимости от молекулярной массы (500 - 3000) НПЭ представляет собой жидкости или твердые вещества. Товарные НПЭФ, так называемые полиэфирные смолы, выпускают в виде 30 - 40% -ных растворов в стироле - отечественные полиэфирные смолы марок ПН - или в диметакрилате триэтиленгликоля (ТГМ-3) - бесстирольные полиэфирные смолы марок ПН-609-21М и др.

    Для инициирования сополимеризации НПЭФ с мономерами (отверждения) обычно используют перекиси и гидроперекиси: перекиси бензоила, метилэтилкетона и циклогексила, а также гидроперекись изопропилбензола. Для снижения температуры разложения перекисей вводят ускорители, которые подбирают в зависимости от инициатора. Так, при использовании перекиси бензоила применяют диметиланилин, а совместно с гидроперекисями - нафтенат кобальта (ускоритель НК). Применение ускорителей позволяет вести отверждение НПЭФ при комнатной температуре. Отверждение сопровождается увеличением плотности НПЭФ и их усадкой. Инициатор и ускоритель отверждения вводят в НПЭФ непосредственно перед их переработкой. Для предупреждения преждевременного гелеобразования (желатинизации) применяют ингибитор - гидрохинон, который добавляют в начале процесса поликонденсации.

    При взаимодействии этиленгликоля с малеиновым ангидридом происходит образование полиэтиленгликольмалеината. Процесс продолжается до образования олигомера. Полученный полиэтиленгликольмалеинат при сополимеризации со стиролом, образует сшитый сополимер.

    сополимер полиэфирная смола

    Применение для отверждения НПЭФ вместо винильных мономеров аллиловых, например триаллилцианурата, позволяет получать более тепло - и термостойкие сополимеры с пониженной горючестью.

    Для получения полиэфиракрилатов (ПЭА) применяют этиленгликоль, диэтиленгликоль, триэтиленгликоль и глицерин, бисфенолы; из двухосновных кислот - себациновую, адипиновую, а также фталевый ангидрид. Одним из наиболее распространенных ПЭА является диметакрилат триэтиленгликоля ТГМ-3. Усадка при отверждении полиалкиленгликольмалеинатов и полиалкиленгликольфумаратов составляет до 5%, для полиэфиракрилатов до 0,5%.

    Технологическая схема процесса получения полиалкиленгликольмалеинатфталатов следующая. Реактор для производства ненасыщенных полиэфиров представляет собой изготовленный из нержавеющей стали или биметалла вертикальный цилиндрический аппарат с эллиптическим днищем и крышкой, снабженный мешалкой обычного рамно-якорного типа и рубашкой. В реактор через крышку введена барботажная труба, по которой подают азот для вытеснения воздуха.

    В реактор загружают гликоль и после его подогрева до 100°С - малеиновый и фталевый ангидриды. Иногда в реактор добавляют в количестве 10% от массы основных компонентов растворитель, образующий азеотропную смесь с выделяющейся при синтезе водой, что облегчает ее удаление. Процесс поликонденсации проводят при 170-200°С и работающей мешалке в токе азота. Пары гликоля конденсируются в обратном холодильнике и конденсат стекает в реактор, а пары воды и азот отводятся через прямой холодильник. Водный конденсат собирается в сборнике. Контролируют процесс по кислотному числу, которое к концу поликонденсации должно составлять 20-45 мг КОН/г. Готовый полиэфир после охлаждения до 70°С сливают в смеситель, где растворяют в стироле или олигомере ТГМ-3. Полученный раствор (полиэфирную смолу ПН-1, массовое соотношение полиэфир: стирол в которой составляет 70: 30) после охлаждения фильтруют и сливают в тару.

    Технологический процесс получения полиэфиракрилатов в основном аналогичен рассмотренному, но осуществляется в более, мягких условиях (при более низких температурах), что позволяет избежать полимеризации ПЭА.

    Полиэфирные смолы марок ПН-1, ПН-3, ПН-6, ПН-609-21М и другие представляют собой вязкие прозрачные жидкости желтого, темно-красного или коричневого цвета. В качестве инициирующей системы отверждения применяют на 100 ч. (масс.) смолы: 3-6 ч. (масс.) гидроперекиси изопропилбензола и 8 ч. (масс.) ускорителя НК для смол ПН-1, ПН-3 и ПН-6; 4 ч. (масс.) гидроперекиси изопропилбензола и 5 ч. (масс.) ускорителя НК для смолы ПН-609-21М.

    Другие ПЭА (МГФ-9, ТМГФ-11) - также жидкости желто-коричневого цвета, более вязкие, чем ТГМ-3. ПЭА используют как связующие, в производстве стеклопластиков, заливочных компаундов, герметиков и т.д. Полиэфирные смолы получили широкое применение в качестве связующих для стеклопластиков, компаундов, лаков для отделки мебели и футляров радиоприемников и телевизоров и для, других назначений.

    Применение ТГМ-3 для отверждения НПЭ взамен летучего и токсичного стирола позволяет улучшить санитарно-гигиенические условия труда, повысить теплостойкость и физико-механические свойства отвержденных сополимеров. На основе ненасыщенных полиэфиров получают также пресс-материалы: препреги и премиксы.

    Препреги - предварительно пропитанные связующим рулонные наполнители - бумага, стеклянные и другие волокна, стеклоткани и стекломаты. Связующим являются твердые ненасыщенные полиэфиры, обладающие достаточной текучестью в расплавленном виде. В частности, для изготовления препрегов пригодны кристаллизующиеся полиэфиры, например полиэтиленгликольфумарат. Этот полиэфир быстро кристаллизуется в смеси с акриловыми и винильными мономерами.

    Ткани или бумагу используют для получения нерастекающихся препрегов, а стекломаты из рубленого волокна - растекающихся пресс-материалов. При прессовании последних растекаемостью обладает не только связующее, но и наполнитель, что позволяет получать изделия сложной конфигурации.

    Технологический процесс получения препрегов состоит в том, что стекломат или стеклоткань сматываются с рулона и направляются в зазор между двумя пропиточными валиками, куда поступает расплав связующего.

    Премиксы - предварительно смешанные пресс-композиции. Практически этот термин относится только к наполненным пресс-материалам на основе ненасыщенных полиэфиров. Помимо связующего, инициатора и волокнистого наполнителя (стекловолокна, асбеста и др.) в состав премикса вводят порошковый наполнитель (мел, каолин), смазку (стеараты цинка или магния) и, для окрашенных материалов, красители или пигменты (лак бирюзовый, лак алый, двуокись титана, окись хрома).

    Технологический процесс производства премиксов заключается в том, что в смеситель периодического действия (например, двухвальный) загружают полиэфир, инициатор и пигмент в виде пасты, перемешивают, а затем вводят смазку. После дополнительного перемешивания загружают порошковый наполнитель, снова перемешивают и, наконец, прибавляют рубленое стекловолокно или другой волокнистый наполнитель, после чего следует окончательное смешение. При использовании смесителей непрерывного действия процесс можно проводить непрерывно. Готовый премикс представляет собой тестообразную композицию или гранулы; его можно хранить не более 3-6 мес. в темном помещении при температуре не выше 20°С.

    Премиксы перерабатывают в изделия компрессионным прессованием при 130-150°С, давлении 2-10 МПа и выдержке 30-60 с на 1 мм толщины изделия. По сравнению с обычной технологией получения изделий из стеклопластиков, применение премиксов дает следующие преимущества:

    1) переработка премикса в изделия отделена от производства связующего, которое часто (например, для полиэфирных смол, растворенных в стироле) связано с применением летучих токсичных мономеров;

    2) усадка премиксов значительно меньше в связи с применением порошкового минерального наполнителя;

    3) при прессовании премиксов не происходит отжима связующего от стекловолокна.

    Премиксы превосходят препреги по текучести, но уступают им по прочностным свойствам после отверждения. Рассмотрим новые сополимерные материалы на основе насыщенной полиэфирной смолы в главе 3.

    Глава 3. Новые сополимеры на основе ненасыщенной полиэфирной смолы ПН-15

    Ненасыщенные полиэфирные смолы представляют собой растворы ненасыщенных полиэфиров молекулярной массы 700-3000 в мономерах или олигомерах, способных к сополимеризации с этими полиэфирами. Достоинствами полиэфирных смол является их небольшая вязкость; способность к отверждению не только при повышенной, но и при комнатной температуре; хорошие механические и электроизоляционные свойства в отвержденном состоянии; высокая стойкость к действию воды, кислот, бензина, масел и других сред .

    Недостатком полиэфирных смол является их невысокая термостойкость.

    Ненасыщенные полиэфирные смолы используются главным образом в качестве связующих холодного и горячего отверждения при изготовлении армированных пластиков, а также в качестве основы для лаков и клеев, компонентов заливочных составов, пластобетона, шпаклевок и т.д.

    Большая часть полиэфирных смол, выпускаемых в промышленности, содержит в своем составе стирол в качестве мономера - растворителя. Широкое использование стирола обусловлено его низкой стоимостью, хорошей совместимостью с полиэфирами, малой вязкостью стирольных растворов полиэфиров и умеренной усадкой при отверждении, а также высокой водостойкостью и хорошими механическими и электроизоляционными свойствами отвержденных смол .

    В качестве нелетучих сшивающих агентов для ненасыщенных полиэфиров используют аллиловые эфиры и оли-гоэфиракрилаты, например, диметакрилат триметиленгли-коля. При этом уменьшается токсичность смол и в некоторых случаях снижается усадка в процессе отверждения .

    Эффективными ускорителями, применяемыми в сочетании с перекисью бензоила, являются третичные амины; с перекисями метилэтилкетона и циклогексанона и гидроперекисями применяются кобальтовые соли нафтеновых и других кислот.

    Инициаторы и ускорители вводят в смолу порознь, т.к. при их непосредственном смешении может произойти воспламенение или взрыв. Последовательность введения не имеет существенного значения, важно, чтобы каждый последующий компонент добавлялся лишь после тщательного смешения со смолой предыдущего.

    Смолы, содержащие ускорители, могут храниться в течение значительно большего периода времени (до 1 месяца и более), чем с добавкой инициаторов. В последнем случае срок хранения смесей обычно не превышает 10 суток.

    Продолжительность гелеобразования зависит от температуры, состава смолы, инициирующей системы, количества отверждающих добавок и при 20°С может составлять от нескольких минут до нескольких часов.

    Значительная часть полиэфирных смол перерабатывается при повышенных температурах (80-160°С), причем обычно используют перекись бензоила, гипериз или перекись дику-мила.

    В данной работе ненасыщенная полиэфирная смола ПН-15 использовалась в качестве связующего при производстве армированных ПКМ. Отверждение этой смолы возможно по радикально-цепному механизму, поэтому традиционно в качестве инициаторов ее отверждения применяют вещества типа пероксидов, легко разлагающихся с образованием активных свободных радикалов. Целью работы являлась разработка нетрадиционной, доступной и экономичной отверждающей системы. Эта от-верждающая система должна обеспечивать высокую степень превращения, повышенную термостойкость полиэфирного связующего в сочетании с повышением допустимых сроков хранения получаемых препрегов при улучшении прочностных характеристик получаемых из этих препрегов ПКМ. При этом решались задачи изучения влияния состава и количества отверждающей системы, продолжительности отверждения, температуры отверждения и напряженности постоянного магнитного поля на степень превращения и характеристики получаемых материалов. Магнитная обработка при получении материалов на основе ненасыщенной полиэфирной смолы применялась впервые. В качестве основной кинетической характеристики выбрана степень превращения Х исходных олигомерных смол в сетчатый нерастворимый в ацетоне продукт, определяемая методом золь-гель анализа.

    Для решения поставленных задач отверждение проводили под действием источников свободных радикалов: гидропирита, спиртового раствора йода, ускорителя - кобальта наф-тионовокислого. Отверждение смолы ПН-15 протекает по конкурирующим механизмам - радикально-цепному и молекулярному. Второй механизм требует наличия компонента, содержащего большое количество реакционно-способных функциональных групп. В качестве такого компонента выбрано доступное исходное вещество - анилино-феноло-формальдегидная смола СФ-342 А.

    При отверждении полиэфирного связующего отверждаю-щей системой, состоящей из анилино-фенолоформальдегид-ной смолы и спиртового раствора йода, следует использовать смесь, состоящую из раствора СФ-342А, спиртового раствора йода, массововое соотношение смолы ПН-15, спиртового раствора йода и смолы СФ-342А в изученных пределах практически не влияет на кинетику отверждения в заданном температурно-временном режиме (рис.1 а), при этом наблюдается индукционный период продолжительностью до 3 часов. Наличие индукционных периодов в принципе характерно для радикально-цепных процессов.

    При использовании для отверждения полиэфирного связующего отверждающей системы, состоящей из гидропирита и смолы СФ-342А также имеется индукционный период, после которого происходит резкое увеличение степени превращения. При оптимальной продолжительности процесса отверждения 3,5-4,5 ч достигается максимальная степень превращения исходных смол в сетчатый продукт.

    В присутствии веществ, разлагающихся с образованием активных радикалов, достигаются степени превращения не более 60-70 %, что можно объяснить слишком быстрым бесполезным разложением инициаторов с образованием нестабильных активных радикалов, которые быстро дезактивируются, не успев осуществить развитие кинетических цепей отверждения, а достаточно стабильных активных радикалов при этом не образуется.

    Более высокие степени превращения достигаются не введением инициаторов и ускорителей, а путем использования взаимного отверждающего влияния смол ПН-15 и СФ-342А. Степени превращения до 85 % наблюдаются при отверждении смесей смол ПН-15 и СФ-342А при их массовом соотношении в пределах 8: 2,5 - 8: 3,0 (рис.1в).

    Смола СФ-342А отличается от смолы ПН-15 более высоким содержанием реакционноспособных функциональных групп, главными из которых являются гидроксильные группы фенольных звеньев и аминогруппы анилиновых звеньев. При этом смола СФ-342А, содержащаяся в меньшем количестве, выступает в качестве отвердителя по отношению к полиэфирной смоле. В кислой среде, создаваемой феноль-ными звеньями, отверждающее влияние смолы СФ-342А

    Во всех перечисленных случаях рекомендуется постепенное повышение температуры, т.к. при более быстром нагреве масса вспенивается газообразными продуктами отверждения, что крайне нежелательно при получении конструкционных материалов. При соблюдении температурно-временного режима, показанного на рисунке 2, материал получается монолитным.

    При исследовании системы, состоящей из ПН-15: гидропирита: СФ-342А (рис.1б) наблюдается волнообразное влияние температуры на степень превращения получаемого материала. Оптимальной температурой отверждения для данного состава системы является температура 120°С, дальнейшее увеличение температуры отверждения нецелесообразно.

    Анализируя полученные результаты, можно сказать, что температурный режим по-разному влияет на отверждающие системы. Например, при использовании отверждающей системы ПН-15: спиртовой раствор йода: СФ-342А (рис.1а) при увеличении температуры увеличивается и степень превращения получаемого материала, независимо от массового соотношения компонентов отверждающей системы. Значительное увеличение степени превращения наблюдается при повышенных температурах (рис.2).

    Рис .2. Влияние температурного режима на степень превращения получаемого материала :

    а ) 1 - ПН-15 : гидропирит : СФ-342А - (9 : 1 : 3 );

    2 - ПН-15 : 1 : СФ-342А - (9 : 4 : 2 ); 3 - ПН-15 : СФ-342А - (8 : 2

    При рассмотрении системы, состоящей из ПН-15: СФ-342А наблюдается монотонное увеличение степени превращения с ростом температуры отверждения. Однако при достаточно высокой температуре отверждения (170°С) пока не удалось добиться высоких степеней превращения (90-97%), хотя данная система является наиболее рациональной, эффективной по сравнению с испробованными в данной работе отверждающими системами для полиэфирного связующего.

    Также в работе исследовалось влияние слоевого нанесения компонентов (СНК) и магнитной обработки (МО) на степень превращения и характеристики получаемого материала. В качестве наполнителей использовали технические нити (нитрон, капрон, вискозная нить). С введением различных волокнистых наполнителей степень превращения получаемых композиционных материалов снижается до 62-64%. Однако с применением СНК и МО она повышается до 87%. С увеличением напряженности ПМП (рис.3) увеличивается степень превращения, уменьшается водопоглощение получаемых материалов, увеличивается удельная ударная вязкость (ау д) и разрушающее напряжение при статическом изгибе (а и).

    X , % материалов от напряженности ПМП : А - нитрон ; ? - капрон ; И - ВН (Напряженность Н пропорциональна силе тока J ).

    Наблюдается линейное увеличение степени превращения с ростом напряженности внешнего магнитного поля.

    Прочностные характеристики также растут с увеличением напряженности за счет усиления адгезии между связующим и наполнителем. Используемые магнитные поля относятся к средним и сильным по напряженности и дальнейшее увеличение напряженности технически нецелесообразно.

    Выводы

    1. Впервые синтезировано связующее на основе ПН-15 и СФ-342А и определены характеристики армированных ПКМ с этими связующими. Применены новые методы получения ПКМ позволяющие повышать степень превращения. Для повышения достигаемых степеней превращения требуется дальнейшая отработка состава отверждающей системы и температурно-временного режима отверждения.2. Впервые осуществлено регулирование свойств армированных ПКМ на основе нового связующего при помощи магнитной обработки. Применение методов модификации, используемых ранее в данной работе, не дает высокой степени превращения, тем не менее применение СНК и МО оказывает положительное влияние на характеристики материалов на основе полиэфирного связующего, что дает возможность регулировать свойства получаемых материалов.

    Литература

    1. Альперин В.И., Аврасин Я.Д., Телешов В.А. - В кн.: Справочник по пластическим массам. Изд.2-е / Под ред.В.М. Катаева, В.А. Попова, Б.И. Сажина. - М.: Химия, 1975, С.442-512.

    2. Студенцов В.Н., Черемухина И.В., Левкин А.Н. Композиционный материал на основе ненасыщенной полиэфирной смолы. Информационный листок, Саратов, ЦНТИ, 2003 - №5.

    3. Студенцов В.Н., Черемухина И.В., Левкин А.Н. // Пластические массы. - 2002. - №8. - С.33-35.

    4. Студенцов В.Н., Черемухина И.В., Левкин А.Н., Скобелева И.В., Яшина О.В. Армированные полимерные композиты на основе ненасыщенной эфирной смолы ПН-15/ Перспективные полимерные композиционные материалы. Альтернативные технологии. Переработка. Применение. Экология (композит-2001), 3-5июля 2001 г. Саратов: СГТУ-С.120-122.

    5. Патент РФ №2232175, 2004.

    Размещено на Allbest.ru

    Подобные документы

      Номенклатура выпускаемых цехом полимербетонных изделий на основе полиэфирной смолы. Способ и технология их производства. Расчет материально-производственного потока. Проектирование бетоносмесительного узла. Выбор основного технологического оборудования.

      курсовая работа , добавлен 07.07.2011

      Рецептуры пресс материалов и химизм процесса. Варка, сушка резольной и новолачной смолы. Способы производства фенопластов и переработки их в изделие. Основное сырье для фаолита и приготовление фенолформальдегидной смолы. Трубы и изделия из текстофаолита.

      реферат , добавлен 22.06.2015

      Технология производства кремнийорганической смолы. Расчет количества загрязняющий веществ, поступающих в воздух от технологического оборудования. Оценка уровня загрязнения воздуха рабочей зоны при нормальных и аварийных режимах работы оборудования.

      дипломная работа , добавлен 16.11.2011

      Свойства и состав, химическая переработка канифоли, производство ее модифицированных (измененных) видов. Технология гранулирования продуктов на основе канифоли. Канифольный клей с высоким содержанием свободной смолы. Сферы применения канифоли и скипидара.

      реферат , добавлен 17.12.2012

      Диаграмма состояния сплава. Смолы, их группы и применение. Прямой и обратный пьезоэффект. Свойства, особенности, составы, применение пьзоэлектриков. Классификация и использование контактных материалов. Расшифровка марок сплавов МНМц 40-1,5 и МНМц 3-12.

      контрольная работа , добавлен 21.11.2010

      Применение эпоксидных смол в различных отраслях промышленности. Приготовление герметизирующих, пропиточных и заливочных изоляционных материалов. Конструкции быстроходных мешалок. Состав и плотность реакционной массы. Динамический коэффициент вязкости.

      курсовая работа , добавлен 18.06.2013

      Проектирование производства поликапроамида для технической кордной нити производительностью 6 тысяч тонн в год. Анализ информационных потоков в области получения и применения поликапроамида. Влияние параметров процесса полимеризации на свойства продукта.

      дипломная работа , добавлен 24.04.2012

      MQ-смолы (олигомерные кремнийорганические соединения) и способы их получения. Структура MQ-смол, их физико-механические свойства. Гидролитическая поликонденсация кремнийорганических мономеров. Триметилсилилирование силикатов и кремниевых кислот.

      курсовая работа , добавлен 16.01.2015

      История возникновения и развития эпоксидных смол, их основные свойства. Структура общего объема потребления эпоксидных смол в промышленности. Методы производства данного материала: полимеризация и отверждение. Основные способы применения эпоксидных смол.

      реферат , добавлен 15.09.2012

      Автоматизация технологического процесса литья под давлением термопластов. Характеристика продукции, исходного сырья и вспомогательных материалов. Описание технологического процесса. Технологическая характеристика основного технологического оборудования.

    - полиэфирные смолы общего назначения получают этерификацией пропиленгликоля смесью фталевого и малеинового ангидридов. Соотношение фталевого и малеинового ангидридов может колебаться от 2:1 до 1:2. Полученную полиэфирную алкидную смолу смешивают со стиролом в соотношении 2:1. Смолы этого типа имеют широкую область применения: они используются для изготовления поддонов, лодок, деталей душевых стоек, плавательных бассейнов и цистерн для воды.

    - эластичные полиэфирные смолы вместо фталевого ангидрида используются линейные двухосновные кислоты (адипиновую или себациновую). Образуется более эластичная и мягкая ненасыщенная полиэфирная смола. Используемые диэтилен- или дипропиленгликоли взамен пропиленгликоля также придают смолам эластичность. Добавление таких полиэфирных смол к жестким смолам общего назначения уменьшает их хрупкость и упрощает переработку. Этот эффект используется в производстве литых полиэфирных пуговиц. Такие смолы часто используют для декоративного литья в мебельной промышленности и при изготовлении рам для картин. Для этого в эластичные смолы вводят целлюлозные наполнители (например, растертую ореховую скорлупу) и отливают их в формы из силиконовой резины. Прекрасное воспроизведение резьбы по дереву может быть достигнуто при использовании форм из силиконовой резины, отлитых непосредственно по оригинальной резьбе.

    - упругие полиэфирные смолы занимают промежуточное положение между жесткими смолами общего назначения и эластичными. Их используют для изготовления изделий, устойчивых к ударным нагрузкам, например игральных шаров, защитных шлемов, ограждений, деталей автомобилей и самолетов. Для получения таких смол вместо фталевого ангидрида используют изофталевую кислоту. Процесс ведут в несколько стадий. Сначала реакцией изофталевой кислоты с гликолем получают полиэфирную смолу с низким кислотным числом. Затем добавляют малеи-новый ангидрид и продолжают этерификацию. В результате получают полиэфирные цепи с преимущественным расположением ненасыщенных фрагментов на концах молекул или между блоками, состоящими из гликоль-изофталевого полимера

    - полиэфирные смолы с малой усадкой при формовании армированного стекловолокном полиэфира различие в усадке между смолой и стекловолокном приводит к появлению раковин на поверхности изделия. Использование полиэфирных смол с малой усадкой ослабляет этот эффект, и полученные таким образом литые изделия не требуют дополнительного шлифования перед окрашиванием, что является преимуществом при изготовлении деталей автомобилей и бытовых электроприборов. Полиэфирные смолы с малой усадкой включают в себя термопластичные компоненты (полистирол или полиметилметакрилат), которые только частично растворяются в исходной композиции. При отверждении, сопровождаемом изменением фазового состояния системы, происходит образование микропустот, компенсирующих обычную усадку полимерной смолы.


    - полиэфирные смолы, устойчивые к атмосферным воздействиям, не должны желтеть при воздействии солнечных лучей, для чего в его состав вводят поглотители ультрафиолетового излучения. Стирол может быть заменен метилметакрилатом, но только частично, ибо метилметакрилат плохо взаимодействует с двойными связями фумаровой кислоты, входящей в состав полиэфирной смолы. Смолы этого типа используют при изготовлении покрытий, наружных панелей и крыш фонарей.

    - химически стойкие полиэфирные смолы сложноэфирные группы легко гидролизуются щелочами, вследствие чего неустойчивость полиэфирных смол к щелочам является их принципиальным недостатком. Увеличение углеродного скелета исходного гликоля приводит к уменьшению доли эфирных связей в смоле. Так, смолы, содержащие «бисгликоль» (продукт взаимодействия бисфенола А с окисью пропилена) или гидрированный бисфенол имеют значительно меньшее число эфирных связей, чем соответствующая смола общего назначения. Такие смолы используют в производстве деталей химического оборудования - вытяжных колпаков или шкафов, корпусов химических реакторов и емкостей, а также трубопроводов.

    - огнестойкие полиэфирные смолы увеличение устойчивости смолы к воспламенению и горению достигается при использовании вместо фталевого ангидрида галогенированных двухосновных кислот, например тетрафторфталевой, тетрабромфталевой и «хлорэндиковой». Дальнейшее повышение огнестойкости достигается введением в смолу различных ингибиторов горения, таких, как эфиры фосфорной кислоты и окись сурьмы. Огнестойкие полиэфирные смолы используются при производстве вытяжных колпаков, деталей электрического оборудования, строительных панелей, а также для изготовления корпусов некоторых видов военно-морских судов.

    - смолы специального назначения . Например, использование триаллилизоцианурата вместо стирола значительно улучшает теплостойкость смол. Специальные смолы могут быть получены отверждением с помощью УФ-излучения, для чего в них вводят такие светочувствительные агенты, как бензоин или его простые эфиры.

    Эпоксидные смолы - олигомеры, содержащие эпоксидные группы и способные под действием отвердителей образовывать сшитые полимеры. Наиболее распространенные эпоксидные смолы - продукты поликонденсации эпихлоргидрина с фенолами, чаще всего - с бисфенолом А.

    n может достигать 25, но чаще всего встречаются эпоксидные смолы с количеством эпоксидных групп меньше 10. Чем больше степень полимеризации, тем гуще смола. Чем меньше номер, указанный на смоле, тем больше эпоксидных групп в составе смолы.

    Особенности эпоксидных полимеров:

    ü возможность получения их в жидком и твёрдом состоянии,

    ü отсутствие летучих веществ при отверждении,

    ü способность отверждаться в широком температурном интервале,

    ü незначительная усадка,

    ü нетоксичность в отверждённом состоянии,

    ü высокие значениями адгезионной и когезионной прочности,

    ü химическая стойкость.

    Впервые эпоксидная смола была получена французским химиком Кастаном в 1936 году. Эпоксидную смолу получают поликонденсацией эпихлоргидрина с различными органическими соединениями: от фенола до пищевых масел (эпоксидирование). Ценные сорта эпоксидных смол получают каталитическим окислением непредельных соединений.

    Для применения смолы нужен отвердитель. Отвердителем может быть полифункциональный амин или ангидрид, иногда кислоты. Также применяют катализаторы отверждения. После смешения с отвердителем эпоксидная смола может быть отверждена - переведена в твердое неплавкое и нерастворимое состояние. Отвердители бывают двух видов: холодного отверждения и горячего отверждения. Если это полиэтиленполиамин (ПЭПА), то смола отвердеет за сутки при комнатной температуре. Ангидридные отвердители требуют 10 часов времени и нагрева до 180 °С в термокамере.

    Реакция отверждения ЭС - экзотермическая. Скорость, с которой смола отверждается, зависит от температуры смеси. Чем выше температура, тем быстрее реакция. Скорость ее удваивается при повышении температуры на 10° С и наоборот. Все возможности повлиять на скорость отверджения сводятся к этому основному правилу. Время полимеризации помимо температуры зависит и от отношения площади к массе смолы. К примеру, если 100 г смеси смолы с отвердителем обращаются в твердое состояние за 15 минут при исходной температуре в 25°С, то эти 100 г, равномерно размазанные по площади в 1 м2, полимеризуются более чем за два часа.

    Для того чтобы эпоксидная смола вместе с отвердителем в отвержденном состоянии была более пластична и не ломалась (не трескалась) нужнодо бавлять пластификаторы. Они также как и отвердители бывают разные, но все нацелены на то, чтобы придать смоле пластичные свойства. Наиболее часто используемым пластификатором является дибутилфталат.

    Таблица - Некоторые свойства не модифицированных и не наполненных диановых эпоксидных смол.

    Наименование характеристики Значение
    Плотность при 20 °С, г/см 3 1,16÷1,25
    Температура стеклования, °С 60÷180
    Теплопроводность, Вт/(м×К) 0,17÷0,19
    Удельная теплоёмкость, кДж/(кг К) 0,8÷1,2
    Температурный коэф-т линейного расширения, °С -1 (45÷65) 10 -6
    Теплостойкость по мартенсу, °С 55÷170
    Водопоглощение за 24 ч, % 0,01÷0,1
    Прочность, МН/м 2 при растяжении 40÷90
    Модуль упругости (при кратковременном действии напряжения), ГН/ м 2 2,5÷3,5
    Ударная вязкость, кДж/м 2 5÷25
    Относительное удлинение, % 0,5÷6
    Диэлектрическая проницаемость при 20°С и 1 МГц 3,5÷5
    Удельное объёмное электрическое сопротивление при 20°С, Ом см 10 14 ÷10 16
    Тангенс угла диэлектрических потерь при 20°С и 1 МГц 0,01÷0,03
    Электрическая прочность при 20°С, МВ/м 15÷35
    Влагопроницаемость, кг/(см сек н/м 2) 2,1 10 -16
    Коэфф. диффузии воды, см 2 /ч 10 -5 ÷10 -6

    Эпоксидно-диановые смолы марок ЭД-22, ЭД-20, ЭД-16, ЭД-10 и ЭД-8, используемые в электротехнической, радиоэлектронной промышленности, авиа-, судо- и машиностроении, в строительстве в качестве компонента заливочных и пропиточных компаундов, клеев, герметиков, связующих для армированных пластиков. Растворы эпоксидных смол марок ЭД-20, ЭД-16, Э-40 и Э-40Р в различных растворителях используются для изготовления эмалей, лаков, шпатлевок и в качестве полуфабриката для производства других эпоксидных смол, заливочных композиций и клеев.

    Эпоксидные смолы, модифицированные пластификаторами - смолы марок К-153, К-115, К-168, К-176, К-201, К-293, УП-5-132 и КДЖ-5-20 используются для пропитки, заливки, обволакивания и герметизации деталей и в качестве клеев, электроизоляционных заливочных композиций, изоляционных и защитных покрытий, связующих для стеклопластиков. Композиция марки К-02Т используется для пропитки многослойных намоточных изделий с целью их цементации, повышения влагостойкости и электроизоляционных свойств.

    Модифицированные эпоксидные смолы марки ЭПОФОМ используются на различных промышленных и гражданских объектах в качестве антикоррозионных покрытий для защиты металлических и бетонных строительных конструкций и емкостного оборудования от воздействия химически агрессивных сред (особенно кислот, щелочей, нефтепродуктов, промышленных и канализационных стоков), атмосферных осадков и повышенной влажности. Эти смолы также применяются для устройства гидроизоляции и монолитных наливных покрытий бетонных полов, грунтовки и нанесения отделочного слоя. На основе смолы марки ЭПОФОМ получают заливочные и пропиточные композиции с высоким содержанием армирующих тканей и наполнителей, композиционные материалы и износостойкие покрытия. ЭПОФОМ применяется в качестве пропиточной составляющей рукавного материала для ремонта и восстановления трубопроводов канализационных сетей, напорных сетей холодного и горячего водоснабжения без их демонтажа и извлечения труб из грунта (бестраншейным методом).

    Композиции марки ЭЗП используются для покрытия емкостей-хранилищ вина, молока и других жидких пищевых продуктов, а также различных видов жидкого топлива (бензина, керосина, мазута и др.).

    Фенолоформальдегидные смолы. В 1909 Бэкеланд сообщил о полученном им материале, который он назвал бакелитом. Эта фенолформальдегидная смола была первым синтетическим реактопластом-пластиком, не размягчавшимся при высокой температуре. Проведя реакцию конденсации формальдегида и фенола, он получил полимер, для которого не мог найти растворителя.

    Фенолоформальдегидные смолы представляют собой продукты поликонденсации фенолов или его гомологов (крезолов, ксиленолов) с формальдегидом. В зависимости от соотношения реагирующих веществ и природы катализатора образуются термопластичные (новолаки) или термореактивные (резолы) смолы. Новолачные смолы - преимущественно линейные олигомеры, в молекулах которых фенольные ядра соединены метиленовыми мостиками и почти не содержат метилольных групп (-СН 2 ОН).

    Резольные смолы - смесь линейных и разветвленных олигомеров содержащих большое число метилольных групп, способных к дальнейшим превращениям.

    Особенности ФФС:

    ü по природе - твердые, вязкие вещества, которые поступают на производство в виде порошка;

    ü для использования в качестве матрицы плавят, либо растворяют в спиртовом растворителе;

    ü механизм отверждения резольных смол состоит из 3-х стадий. На стадии А смола (резол) по физическим свойствам аналогична новолакам, т.к. растворяется и плавится, на стадии В смола (резитол) способна размягчаться при нагревании и набухать в растворителях, на стадии С смола (резит) не плавится и не растворяется;

    ü для отверждения новолачных смол необходим отвердитель (обычно вводят уротропин, 6-14% от массы смолы);

    ü легко модифицируются и сами модифицируют.

    Фенольная смола сначала использовалась как легко формующийся высококачественный изолятор, защищающий от воздействия высоких температур и электрического тока, а затем стала главным материалом стиля Art Deco. Практически первый коммерческий продукт, полученный методом прессования бакелита - торцы каркаса катушки высокого напряжения Фенолоформальдегидная смола (ФФС) производится промышленностью с 1912 г. В России производство литых резитов под наименованием карболит было организованно в 1912÷1914 гг.

    Фенолоформальдегидные связующие отверждаются при температурах 160-200°С с применением значительного давления порядка 30-40 МПа и выше. Получаемые в результате полимеры стабильны при длительном нагревании до 200°С, а в течение ограниченного времени способны противостоять действию и более высоких температур несколько суток при температурах 200-250°С, несколько часов при 250-500°С, несколько минут при температурах 500-1000°С. Разложение начинается при температуре около 3000°С.

    К недостаткам фенолоформальдегидных смол можно отнести их хрупкость и большую объемную усадку (15-25%) при отверждении, связанную с выделением большого количества летучих веществ. С целью получения материала с малой пористостью необходимо при формовании применять высокие давления.

    Смолы фенолоформальдегидные марок СФЖ-3027Б, СФЖ-3027В, СФЖ-3027С и СФЖ-3027Д предназначены для производства теплоизоляционных изделий на основе минеральной ваты, стекловолокна и для других целей. Смола фенолоформальдегидная марки СФЖ-3027С предназначена для производства пенопласта марки ФСП.

    На основе ФФС изготавливают разнообразные пластические массы, называемые фенопластами. В состав большинства из них, кроме связующего (смолы), входят и другие компоненты (наполнители, пластификаторы, и др). Они перерабатываются в изделия главным образом методом прессования. Прессматериалы можно готовить на основе как новолачных, так и резольных смол. В зависимости от применяемого наполнителя и степени измельчения все прессматериалы разделяются на четыре типа: порошковые (пресспорошки), волокнистые, крошкообразные и слоистые.

    Обозначение пресспорошков чаще всего складывается из буквы К, обозначающей слово композиция, номер смолы, на основе которой изготавливается данный прессматериал, и числа, соответствующего номеру наполнителя. Все пресспорошки по назначению могут быть разделены на три большие группы:

    Порошки для технических и бытовых изделий (К-15-2, К-18-2, К-19-2, К-20-2, К-118-2, К-15-25, К-17-25 и т. д.) изготавливаются на основе новолачных смол. Изделия из них не должны подвергаться значительным механическим нагрузкам, действию тока высокого напряжения (более 10 кВ) и температуры выше 160°С.

    Порошки для электроизоляционных изделий (К-21 -22, К211 -2, К-211-3, К-211 -4, К-220-21, К-211-34, К-214-2 и т. д.) изготавливаются в большинстве случаев на основе резольных смол. Изделия выдерживают действие тока напряжением до 20 кВ при температуре до 200°С.

    Порошки для изделий специального назначения обладают повышенной во до- и теплостойкостью (К-18-42, К-18-53, К-214-42, и др.), повышенной химической стойкостью (К-17-23. К-17-36, К-17-81, К-18-81 и др.), повышенной прочностью на удар (ФКП-1, ФКПМ-10 и др.) и т. п.

    Волокнистые прессматериалы готовятся на основе резольных смол и волокнистого наполнителя, применение которого позволяет повысит некоторые механические свойства пластиков, главным образом удельную ударную вязкость.

    Волокниты - прессматериалы на основе наполнителя - хлопковой целлюлозы. В настоящее время изготовляют три вида волокнита: волокнит, высокопрочный волокнит и корд волокнит. На основе асбеста и резольной смолы выпускаются прессматериалы марок К-6, К-6-Б (предназначены для изготовления коллекторов) и К-Ф-3, К-Ф-З-М (для тормозных колодок). Прессматериалы, содержащие стеклянное волокно, называются стекловолокнитом. Он обладает более высокой механической прочностью, водо- и теплостойкостью, чем другие волокнистые прессматериалы.

    Крошкообразные прессматериалы изготавливаются из резольной смолы и кусков (крошки) различных тканей, бумаги, древесного шпона. Они обладают повышенной удельной ударной вязкостью.

    Слоистые прессматериалы выпускаются в виде больших листов, плит, труб, стержней и фасонных изделий. В зависимости от рода наполнителя (основы) листовые слоистые пластики выпускаются следующих видов: текстолит - на хлопчатобумажной ткани, стеклотекстолит - на стеклянной ткани, асботекстолит - на асбестовой ткани, гетинакс - на бумаге, древесно-слоистые пластики - на древесном шпоне.

    Ненасыщенные полиэфирные смолы нашли широкое применение в самых разных отраслях народного хозяйства. При этом для выполнения конкретных производственных задач были разработаны полиэфирные смолы с разнообразными свойствами. Поэтому существующие смолы можно классифицировать по их свойствам и, соответственно, по области применения.

    1. Полиэфирные смолы общего назначения.
      С использованием таких смол производятся конструкции для бытового использования или конструкции, элементы которых слабо нагружены. Такие смолы преимущественно не требуют армирования и применяются в чистом виде, например, для изготовления поддонов, стоек, емкостей для жидкости и т.д.
    2. Эластичные смолы.
      По сравнению с ненасыщенными полиэфирными смолами общего назначения эластичные имеют меньшую жесткость. Их чаще всего добавляют к другим видам смол для понижения их хрупкости и облегчения обработки. Из таких смол делают пуговицы и другие декоративные изделия.
    3. Упругие полиэфирные смолы.
      Этот тип смол более жесткий, чем эластичные смолы. Их используют для изготовления тех изделий, которые рассчитываются на сопротивление ударным нагрузкам - детали корпусов самолетов и автомобилей, ограждения и защитные шлемы.
    4. Смолы, отличающиеся малой усадкой.
      В полиэфирных смолах с малой усадкой содержатся термопластичные компоненты, к примеру, полистирол. Они только частично могут раствориться в исходном материале. В таких смолах в процессе отверждения образуются микропустоты или микропоры, компенсирующие обычную усадку, привычную для полимерной смолы. Смолы, имеющие малую усадку, используются для деталей бытовой электроники, а также в автомобильной промышленности.
    5. Смолы, имеющие особую устойчивость к воздействию атмосферы.
      Прежде всего такие смолы противостоят воздействию ультрафиолетового излучения солнечного света. В них вводят компоненты, которые ультрафиолет поглощают. Из таких смол формируют перекрытия и наружные панели, которыми облицовываются крыши и стены зданий.
    6. Химически устойчивые смолы.
      Обычные смолы плохо выдерживают действие щелочей, поэтому для повышения химической стойкости в смолу добавляют компоненты, обеспечивающие повышенное содержание углерода и снижение химически активных связей. Из таких смол изготавливают химическое оборудование - емкости и трубопроводы, химические реакторы.
    7. Огнестойкие смолы.
      Армированные стекловолокном изделия из обычных смол могут гореть, хоть и с малой скоростью. За счет добавления специальных компонентов горючесть и воспламеняемость дополнительно понижаются и смолы становится возможным применять для электрооборудования и во всех случаях, где требуется особая пожарная безопасность.
    8. Ненасыщенные полиэфирные смолы специального назначения.
      Путем подбора компонентов в составе полиэфирных смол удается придать им особые свойства, такие как повышенная теплостойкость, способность отверждаться под УФ-излучением и другие.