• Что можно приготовить из кальмаров: быстро и вкусно

    Паровоз - самостоятельно (автономно) передвигающийся по рельсовому пути локомотив , имеющий паросиловую энергетическую установку.

    Энергетическая цепь паросиловой установки паровоза включает в себя паровой котёл - тепловой генератор (парогенератор) и поршневую паровую машину в качестве теплового двигателя, который при помощи кривошипно-шатунного механизма приводит во вращение ведущие колёса (колёсные пары). В паровом котле происходят три последовательных этапа преобразования энергии: в топке парового котла протекает процесс горения топлива и преобразования его внутренней химической энергии в тепловую, носителем которой служат продукты сгорания - дымовые газы; в собственно паровом котле осуществляется процесс теплообмена между продуктами сгорания топлива и водой с целью доведения воды до кипения и образования насыщенного пара; в пароперегревателе повышаются температура и теплосодержание пара (также за счёт теплообмена с продуктами сгорания топлива).

    Питание парового котла водой из водяного бака, находящегося на тендере паровоза, осуществляется инжекционным водяным насосом за счёт использования какой-то части энергии сжатого пара на собственные нужды паровоза.

    Историческая справка

    Идея создания транспортного средства, самостоятельно передвигающегося по рельсовым путям, принадлежит английскому изобретателю Р. Тревитику, который в 1803 году повозку, приводимую в движение паром, получаемым от размещённого на ней парового котла, поставил на рельсы.

    Конструкция первого паровоза предопределила формы и направление развития будущих локомотивов, в которых на протяжении многих десятилетий использовались горизонтально расположенный котел, вырабатывающий пар высокого давления, выпуск пара для усиления тяги в дымовую трубу и т. п.

    Однако из-за большой собственной массы (около 6 т) паровоз разрушал чугунные рельсы. Не выдержал испытаний и второй паровоз, но предпосылки для усовершенствования локомотива были созданы и получили развитие в работах других изобретателей.

    Паровоз Дж. Стефенсона «Ракета» (Великобритания, 1829 год)

    В 1810-20-е ггоды было создано несколько конструкций паровозов для применения в рудниках и шахтах: в 1811 году английский механик М. Муррей построил паровоз с зубчатыми колёсами, которые сцеплялись с находящимся между рельсов третьим колесом; в 1812 году английский изобретатель У. Брентон создал «шагающий» паровоз, отталкивающийся от пути рычагами; в 1813 году инженер У. Хедли установил на повозке сдвоенную паровую машину (паровоз известен под названием «Пыхтящий Билли»). В 1814 году паровоз «Блюхер», не отличавшийся оригинальностью конструкции, построил Дж. Стефенсон. В устройство второго паровоза, «Эксперимент», изобретатель внёс ряд усовершенствований: использовал двухцилиндровую паровую машину, спаренные колёса с наружными соединительными дышлами, применил отвод пара через дымовую трубу для усиления тяги через специальное устройство - конус, ставшее впоследствии непременной частью любого паровоза.

    В 1819 году были построены пять паровозов для эксплуатации в шахтах; затем в 1823 году - для железнодорожной линии Стоктон - Дарлингтон, строительством которой Стефенсон руководил. В 1825 году паровоз, названный «Локомошен», под № 1 провёл по дороге поезд в день её открытия. Однако, несмотря на применение конусной тяги и другие усовершенствования, паровоз не смог развивать высокую скорость из-за малой мощности парового котла.

    В 1829 году Стефенсон построил паровоз «Ракета », использовав идею многотрубного котла. В 25 трубах циркулировала не вода, как в предыдущих моделях, а горячие газы, то есть впервые был применён жаротрубный котел. Это нововведение позволило паровозу значительно увеличить скорость. На единственном в своем роде соревновании, известном как битва паровозов в Рейнхилле, проводившемся администрацией железной дороги Ливерпуль - Манчестер 1 октября 1829 года, он показал рекордную для того времени среднюю скорость 22 км/ч.

    Паровоз Черепановых (Россия, 1834 год)

    После усовершенствования конуса скорость движения паровозов удалось увеличить до 38 км/ч. Эта победа доказала целесообразность применения паровой тяги на жжелезнодорожном транспорте и обусловила его дальнейшее развитие. Первый в России паровоз был построен в 1834 году М. Е. Черепановым (1803-1849 ггоды) под руководством и при участии его отца Е. А. Черепанова (1774-1842 ггоды) на Выйском заводе. Машину называли «сухопутным пароходом», «пароходкой», «паровой телегой». Слово «паровоз» впервые появилось в петербургской газете «Северная пчела» в 1836 году. В дальнейшем термины «паровоз» и «локомотив» стали синонимами.

    Паровоз был испытан на опытном участке чугунной дороги протяжённостью 853,5 м, специально проложенной от Выйского завода. Паровоз смог везти состав до 3,3 т со скоростью 13-16 км/ч. По данным профессора В. С. Виргинского задние (ведущие) колёса паровоза имели диаметр больше, а передние (бегунковые) - меньше. (Модель паровоза Черепановых, имеющая одинаковые размеры колёс, находится в Центральном музее железнодорожного транспорта в Санкт-Петербурге.)

    В марте 1835 года Черепановы построили второй, более мощный паровоз. Однако Черепановым и горному инженеру Ф. И. Швецову, в начале 1830-х годов предложившему проложить рельсовые пути на заводе, не удалось переубедить заводскую администрацию в преимуществах паровой тяги, и первые русские паровозы практического применения не нашли.

    Однако паровоз остаётся одним из уникальных технических творений человечества, безраздельно господствовавшим на железнодорожном транспорте более 130 лет.

    Во многих странах сохраняются паровозы-памятники, пользуются популярностью ретро-поезда с паровой тягой. Часть паровозного парка находится в запасе, при необходимости работоспособность паровозов может быть восстановлена.

    Галерея

      Промышленный танк-паровоз типа 0-2-0, масштаб 1:10. Спроектирован и построен для маневровой работы у металлургических печей крупных промышленных предприятий. В 1930-е годы такие паровозы строились на Невском, Муромском и Сормовском заводах. Экспонат ЦМЖТ

      Первый русский паровоз, построенный механиками Черепановыми в 1833-1834 годах в Нижнем Тагиле. Это паровоз водил по заводской дороге составы с рудой весом до трёх тонн со скоростью до шестнадцати километров в час. Модель в масштабе 1:2 сделана тоже Черепановыми в 1839 году. Экспонат ЦМЖТ

      Паровоз с «ногами »Брентона, 1813 год. Это паровоз имел один горизонтальный цилиндр, шток поршня которого был соединён с «ногами», снабжёнными «ступнёй» в виде скобы. При движении поршня паровой машины «нога» упиралась в землю, заставляя паровоз продвинуться на длину хода поршня. Таким образом достигалась скорость порядка пяти километров в час. Экспонат ЦМЖТ

    Давно искал эту статью (в детстве, к сожалению, изничтожил небольшой архив "Техники молодежи"). Стиль написания, конечно, в лучших традициях советского технократического романтизма:-), да и автор ярый приверженец паровой тяги, но идея все же интересная.

    ПАРОВОЗ XXI ВЕКА?

    «Ах, какая чудная картина, когда по рельсам мчится паровоз!» Сейчас и песню эту мало кто помнит, и саму «чудную картину». А ведь было! Окутываясь клубами дыма, солидно покрикивая на переездах, паровозы везли по магистралям тяжелые составы.

    В эпоху своего расцвета паровозы не без оснований считались шедеврами передовой инженерной мысли. Однако, пройдя более чем вековой путь развития, они уступили дорогу локомотивам с электрической тягой и тепловозам. 30 лет назад производство паровиков было прекращено, и вскоре они исчезли так же, как динозавры или мамонты. О былом величии паровой тяги свидетельствуют только отдельные музейные экземпляры.

    Чем же они оказались плохи?

    Критикуя какую-либо машину, обычно подчеркивают, что у нее КПД, как у паровоза. А какой он был? В монографии «Паровозы» (1949 г.) под редакцией академика С. П. Сыромятникова приведено значение 8,2%, достигнутое в опытном локомотиве Коломенского паровозостроительного завода.

    У серийных паровозов КПД не превышал 7,8%. Это значит, что меньше десятой части энергии сгоревшего угля шло на полезную работу, остальная, в прямом и переносном смысле, вылетает в трубу. Хватает у паровоза и недостатков, связанных с эксплуатацией. Вспомним хотя бы тяжелейшую процедуру удаления накипи из котла. Тот, кто мучился, очищая вручную свой чайник, поймет, чего это стоило. И все же интерес к этим динозаврам технической эволюции пробудился вновь.

    Какие же, ранее неведомые достоинства обнаружили у них специалисты? Может быть, мы и вправду скоро увидим мчащиеся по рельсам паровозы? Попробуем разобраться.

    Достоинством обернулось то, что раньше считалось недостатком, - топление углем. О паровозе в Харьковском политехническом вспомнили как раз потому, что он работает на угле. В уникальном Канско-Ачинском бассейне наиболее дешевым, открытым способом можно добывать очень много этого топлива, но оно обладает довольно низкой теплотворной способностью, и его дальнейшая транспортировка к месту потребления нерентабельна. Вот тут-то, возможно, и окажется целесообразным применение паровозов. Расходуя местный низкосортный уголь, они могут повысить Эффективность транссибирских перевозок. В топке паровоза прекрасно сгорают и такие угли. Более того, при сжигании угольной пыли полнота сгорания топлива увеличивается почти до 95%. Одно это позволяет значительно уменьшить тепловые потери котла. За прошедшие годы этот способ усовершенствовали для электростанций. Его применение вполне возможно и на паровозе.

    Итак, в пылеугольной топке энергия топлива почти полностью перешла в тепловую. Теперь ее надо «перекачать» в пар. Как это сделать наиболее эффективно? И опять ничего изобретать не надо, поскольку на тех же электростанциях прекрасно работают водотрубные котлы. Их конструкция рассчитана на высокое давление - это тоже вклад в повышение общего КПД паровоза. Перегрев пара, водо- и воздухоподогрев увеличивают КПД примерно на треть. Есть резервы и у самой паровой машины. Увеличить срок между чистками котла от накипи можно магнитной обработкой воды.

    Как видите, резервы у обновленного паровоза есть. Именно их использовали сотрудники и студенты Харьковского политехнического института, разрабатывая новые паровые локомотивы. Проекты убедительно доказали, что возможно создание паровозов с КПД вдвое, а то и в трое большим, чем в прошлом.

    Не вызывает сомнений, что современное состояние промышленности позволяет создать практически любой локомотив, например по одному из проектов ХПИ. Но от опытной машины до ее серийного производства путь не скор и не близок. А главное - он должен быть оправдан.

    Теперь слово за экономикой. Паровоз, конечно, не альтернатива другим типам локомотивов. Но, кто знает, может быть, и ему найдется работа на железных дорогах XXI века.


    КАКИМ ОН МОЖЕТ БЫТЬ?

    Спроектированный в ХПИ паровоз трехсекционный. В нем 4 четырехосных экипажа, а на крайних секциях еще по двухосной бегунковой тележке. Поэтому осевая формула выгладит довольно замысловато: 2-4-0+(0-4-0+0-4-0)+0-4-2 (в скобках часть формулы, относящаяся к средней секции). Ее симметрия иллюстрирует одинаковую приспособленность локомотива к движению передним и задним ходом.

    В бункере тендера 60 т специально приготовленной угольной пыли. Через 12 створок, каждая из которых имеет индивидуальный привод, он попадает в шнековый транспортер. Чтобы уголь не смерзался и не примерзал к стенкам, по всей наружной поверхности бункера расположены радиаторы обогрева. В морозы вентилятор будет закачивать туда отработанный горячий газ. Управлять подачей топлива - выбором степени и продолжительности открытия створок бункера, подбором скорости вращения шнека - будет, естественно, автоматика. Через форсунки топливо распыляется в факельной камере. Воздух для этого нагнетает центробежный вентилятор. Он прогоняет поток по специальным коробам, огибающим паровой котел. Нагретый воздух под давлением 0,3 атм и вдувает уголь. Горящая с температурой около 1500 о С смесь отдает тепло трубкам водотрубного котла, затем пароперегревателя, и наконец, водоподогревателя. Остывшие до 200 о С газы, очистив предварительно от золы, выбрасывают через дымовую трубу в атмосферу. Для очистки в поток газа впрыскивают воду. Водой же смывают и задержанную золу, которая накапливается в шлакосборном бункере. По предварительным оценкам, можно уловить до 95% пылеобразных шлаков, как раз и образовывавших традиционный дым. Так называемое мокрое шлакоудаление обеспечивает долговечность топки. Но самое главное - делает паровоз экологически чище.

    В котле вода, нагреваясь, поднимается по трубкам, превращается в пар. Под давлением 32 атм он через 16 комплектов электроуправляемых клапанов подается в паровые машины. Когда машинист открывает регулятор, он направляет пар либо в 1, либо в 2, 3,…и, наконец, во все 8 блоков цилиндров. Таим образом, у локомотива 8 ступеней регулирования тяги. Так называемый мятый пар из машины идет в верхнюю часть пароконденсатора, где его принудительно охлаждают атмосферным воздухом. Из водосборника регенерированную воду через подогреватель закачивают в нижнюю часть котла.

    Электроэнергией локомотив снабжают 2 генератора постоянного тока, один работает от паровой турбины, другой - только во время движения от бегунковой тележки пароконденсаторной секции. По расчетам, мощность его машин 8000 л. с., а КПД можно довести до 20-21%. Кроме того, за счет большого сцепного веса локомотив развивает тягу 65 тыс. кг.


    ЧТО ДЕЛАЕТСЯ ЗА РУБЕЖОМ?

    ПАРАМЕТРЫ ЛОКОМОТИВОВ С УГОЛЬНЫМ ОТОПЛЕНИЕМ

    Наименование параметра

    ХПИ

    Проект

    ACE 3000

    (США)

    Длина по сцепкам, м

    Мощность максимальная, л. с.

    8000

    3000

    Высота, м

    4,3

    4,3

    Вес снаряженный, т

    420

    порожний, т

    360

    Количество движущих колесных пар

    Котел: тип

    водотрубный

    огнетрубный

    давление , атм

    температура перегретого пара , о С

    500

    430

    Машина: тип

    однотактная

    компаунд

    количество ступеней расширения пара

    Запас топлива, т

    Паровозы проектируют и американские специалисты. Их на это побудил топливный кризис 70-х годов. Сейчас проходит испытания локомотив ACE 3000. Он оснащен огнетрубным котлом, пароперегревателем, водо- и воздухоподогревателями. Давление котлового пара достигает 17 атм, а температура перегретого пара 430 о С. По этим показателям паровик мало отличается от своих предшественников тридцатилетней давности. И все же на испытаниях его КПД был около 18%.

    Наиболее интересная новинка локомотива - топка, созданная аргентинцем Д. Порта. Процесс горения в ней протекает в две стадии. Сначала идет неполное сжигание угля, при этом образуется горючий газ с достаточно высокой температурой. Эта часть топки по принципу действия напоминает газогенератор. Тепло, выделенное при неполном сгорании угля, обогревает котел. Затем горючий газ очищают, пропуская сквозь распыленную воду, и смешивают с воздухом. Рабочая смесь сгорает в газовых каналах огнетрубного котла. Небольшая паровая турбина отсасывает продукты сгорания, прогоняет их сквозь многозвенный сепаратор (циклон), очищая от остатков золы. Так что вместо черного облака над локомотивом вьется лишь легкая дымка.

    Замкнутая система циркуляции воды и пара позволяет эксплуатировать локомотив без промывки котла целый год. Напомним, что старые паровозы требовали этой довольно сложной операции каждые 40-60 суток.

    В ACE 3000 есть и новинка в духе времени - это бортовой компьютер. Паровозная ЭВМ по своим задачам сродни автопилоту на самолете. Она тоже может управлять локомотивом, правда только после разгона поезда. Компьютер контролирует процесс горения топлива, следит за сцеплением колес с рельсами, выполняет другие функции, причем не только на самом паровозе, но и, например, на тепловозах, работающих вместе с ACE 3000 двойной тягой. Естественно, что тепловозы в этом случае должны быть оснащены аналогичными компьютерами.

    Интересно, что, исследуя около 30 первичных двигателей и их модификаций для локомотивов, американские специалисты расположили их в зависимости от расходов на годовую эксплуатацию. Паровая машина в этом списке оказалась третьей, несколько уступив в рентабельности газовой турбине и двигателю Стирлинга. Дизель, кстати, был только 14-м. Правда, эта классификация очень зависит от цены на нефть, которая сильно колеблется, но все же показательна.

    Специалисты считают, что пока паровоз требует более глубокой проработки. Только поездная работа опытного образца, а лучше нескольких машин, в реальных условиях на одной из крупнейших железных дорог раскроет все положительные и отрицательные свойства паровика нового поколения.

    Олег КУРИХИН, кандидат технических наук

    Журнал «Техника молодежи», 01-1987 г. (орфография и синтаксис сохранены)


    Настроение: happy

    Одним из важных параметров, влияющих на выбор типа локомотива для обеспечения перевозок, является его коэффициент полезного действия (к.п.д). Первые локомотивы - паровозы, появившиеся в начале 19 века в Великобритании, на протяжении почти 100 лет были на железных дорогах единственным тяговым средством. Рост промышленности и торговли, повлёкший за собой увеличение объёма перевозок, потребовал интенсивного развития железнодорожного. транспорта, увеличения массы поездов и скорости их движения и соответственно совершенствования конструкции локомотива, повышения их мощности, силы тяги и экономичности. Наиболее совершенные паровозы, выпускавшиеся в начале 20 века, уже имели максимальный к.п.д 6-8%, а средне-эксплуатационный - на уровне 4% . На железных дорогах СССР самым мощным массовым паровозом, выпуск которого начался в 1931, был паровоз серии ФД (Феликс Дзержинский) типа 1-5-0 со сцепным весом 1040 кН, расчётной силой тяги 241,5 кН и конструкционной скоростью 90 км/ч. При расчётной скорости 23 км/ч он развивал мощность на ободе колеса 1513 кВт. Для сравнения - распространенный в 1980-х годах грузовой тепловоз 2ТЭ10М имел конструкционную скорость 100 км/ч, силу тяги в продолжительном режиме 245 кН на скорости 24,6 км/ч.
    Конструкционная скорость пассажирского тепловоза ФД п (точнее паровоза ИС "Иосиф Сталин", стыдливо переименованного в годы борьбы с "культом личности") составила 115 км/ч; опытные паровозы типа 2-3-2 для скоростных пассажирских перевозок на испытаниях развивали скорость до 160-170 км/ч. Для сравнения: пассажирский тепловоз ТЭП70 имеет конструкционную скорость 160 км/ч.
    В США были выпущены мощные сочленённые паровозы типа 1-5+5-1 (с двумя или несколькими самостоятельными экипажными частями), которые обеспечивали расчётную силу тяги до 660 кН. Отечественный магистральный грузовой паровоз последнего типа развивал мощность 1800 кВт, имел конструкционную скорость 80 км/ч; пассажирский паровоз - соответственно 1900 кВт и 125 км/ч. Первые магистральные тепловозы, появившиеся в 20-х гг. 20 в., имели в несколько раз более высокий, чем у паровозов, к.п.д, что явилось одной из решающих причин довольно быстрого их развития и совершенствования. В СССР была организована разработка проектов тепловозов для последующей постройки их на отечеств, заводах и за границей. Магистральный тепловоз ЩЭЛ-1 построен ленинградским заводам в 1924 году; тепловозы Э ЭЛ 2 и Э МХ 3 были заказаны для отечественных железных дорогах в Германии в счёт поставок паровозов. В 1931 году Ашхабадская ж. д.первой на сети ж. д. Советского Союза перешла на тепловозную тягу. интенсивно в СССР Замена паровозной тяги на тепловозную и электровозную началась с конца 1940-х и особенно развернулась после 1950-х годов, когда был прекращён выпуск паровозов (1956 год).
    Год Протяженность линий на конец года, тыс. км Выполнение грузовой работы за год, %
    Электри-фицированных На тепловозной тяге Электровозами Тепловозами Паровозами
    1955 5,36 6,4 8,4 5,7 85,9
    1960 13,81 17,7 21,8 21,4 56,8
    1965 24,9 54,8 39,5 45,0 15,5
    1970 33,9 76,2 48,7 47,8 3,5
    1975 38,9 91,6 51,7 47,9 0,4
    1980 43,7 98,1 54,9 45,1 0,0

    Современные тепловозы в большом диапазоне реализации мощности имеют к.п.д около 30%, а среднеэксплуатационный к.п.д - около 25%. По сравнению с паровозами тепловозы помимо более высокой экономичности обладают рядом других положительных эксплуатационных характеристик: позволяют увеличить массу поезда, удлинить тяговые плечи, сократить простой в ремонте, повысить производительность труда. Серийные тепловозы ТЭ10 и 2ТЭ116 при мощности дизеля 2206 кВт имеют расчётную силу тяги 253 кН в секции и развивают мощность на колёсах 1612- 1668 кВт. Выпускаются 2-х, 3-х, 4-х секционные тепловозы ТЭ10. Тепловозы 2ТЭ121 при мощности дизеля 2941 кВт имеют силу тяги 300 кН в секции и развивают мощность на колёсах 2173 кВт. Конструкционная скорость грузовых тепловозов 100 км/ч, пассажирских - 160 км/ч. Созданы опытные образцы тепловозов с секционной мощностью (по дизелю) 4412 кВт.
    Первые попытки использования электрической энергии для тяги поездов относятся к концу 19 века. Первый отечественный электровоз ВЛ19, выпущенный в 1932, имел 6 тяговых двигателей мощностью по 340 кВт каждый и развивал скорость до 90 км/ч.
    Наиболее распространённые современные электровозы постоянного тока ВЛ10 имеют расчётную силу тяги 502 кН при расчётной скорости 45,8 км/ч, развивают мощность на колёсах 5280 кВт. Электровозы переменного тока ВЛ80 с расчётной силой тяги 512 кН при расчётной скорости 43,5 км/ч развивают мощность на колёсах 6350 кВт. Конструкционная скорость большинства грузовых электровозов - до 110 км/ч, а пассажирских электровозов ЧС2 и ЧС4 - 160 км/ч. С 1985 года для вождения тяжеловесных и длинносоставных поездов началось создание мощных грузовых электровозов нового поколения, развивающих мощность около 10 тысяч кВт. Грузовые электровозы постоянного тока ВЛ15 развивают мощность 9000 кВт при силе тяги 688 кН, а грузовые электровозы переменного тока ВЛ85 имеют мощность 10 000 кВт при силе тяги 720 кН; пасс.
    Не остаются в стороне и локомотивы пассажирского парка. Электровозы постоянного тока ЧС7 имеют мощность 6160 кВт, а его "собратья" ЧС8, работающие на переменном токе - мощность 7200 кВт.
    Собственный к.п.д электровозов достигает 88-90% при общем к.п.д электрической тяги (с учётом к.п.д ТЭЦ или ГЭС, тяговых подстанций, линий электропередачи и контактной сети) около 22-24%. Возврат энергии может достигать 25% расхода энергии на тягу.
    Перспективно использование в качестве моторного топлива на тепловозах сжатого и сжиженного природного газа. Повышению экономичности могут способствовать совершенствование термодинамического цикла дизеля, освоение высокотемпературных топливных элементов. Достаточно высокой мощностью - до 6300 кВт - обладает газотурбовоз. Однако из-за сравнительно невысокого к.п.д (12-18%) и сложности изготовления этот локомотив ни как не выйдет из периода экспериментальных поездок. В мире он был выпущен малыми сериями за рубежом (Германия, США), единичные экземпляры построены в нашей стране.
    Дальнейшее совершенствование электровозов и тепловозов будет направлено на повышение их надёжности и экономичности, улучшение тяговых качеств, снижение затрат на обслуживание и ремонт путём создания безремонтных конструкций узлов и агрегатов, применения бесколлекторного тягового привода, микропроцессорной техники в системах управления, регулирования, диагностики. Дальнейшее развитие локомотивостроения связано с увеличением единичной мощности и скорости движения. Возможно, получат свою реализацию проекты турбопоездов, в которых используется авиационная газовая турбина. Ведь уже сейчас скорость до 200 км/ч, для стран Европы и России воспринимается как обыкновенное техническое решение, а значит поезда будут стремиться закрепить свой рекорд скорости - почти 600 км/ч.

    Паровозы, устройство которых на фоне других технологий сегодня является примитивным, до сих пор применяются в некоторых странах. Они представляют собой автономные локомотивы, использующие в качестве двигателя паровую машину. Самые первые подобные локомотивы появились в XIX веке и сыграли ключевую роль в становлении экономики целого ряда стран.

    Устройство паровоза постоянно совершенствовалось, в результате чего появлялись новые конструкции, которые сильно отличались от классической. Так возникли модели с шестернями, турбинами, без тендера.

    Принцип работы и устройство паровоза

    Несмотря на то, что существуют разные модификации конструкций этого транспорта, все они имеют три основные части:

    • паровую машину;
    • котел;
    • экипаж.

    В паровом котле получают пар - именно этот агрегат является первичным источником энергии, а пар - основным рабочим телом. В паровой машине оно преобразуется в возвратно-поступательное механическое движение поршня, которое в свою очередь при помощи кривошипно-шатунного механизма трансформируется во вращательное. Благодаря этому колеса паровоза вращаются. Также пар приводит в движение паровоздушный насос, паротурбогенератор и используется в свистке.

    Экипаж машины состоит из ходовой части и рамы и представляет собой передвижное основание. Эти три элемента являются основными в устройстве паровоза. Также к машине может примыкать тендер - вагон, который служит хранилищем угля (топлива) и воды.

    Паровой котел

    При рассмотрения устройства и принципа работы паровоза начинать нужно с котла, так как это первичный источник энергии и главный компонент данной машины. К этому элементу предъявляются определенные требования: надежность и безопасность. Давление пара в установке может достигать 20 атмосфер и более, что делает его практически взрывчаткой. Нарушение работы какого-либо элемента системы может привести к взрыву, что лишит машину источника энергии.

    Также данный элемент должен быть удобным в управлении, ремонте, обслуживании, быть гибким, то есть уметь работать с разным топливом (более или менее мощным).

    Топка

    Основной элемент котла - топка, где сжигают твердое топливо, которое подается при помощи углеподатчика. Если же машина работает на жидком топливе, то его подают через форсунки. Выделяемые в результате сгорания высокотемпературные газы передают тепло через стенки огненной коробки воде. Затем газы, отдав большую часть тепла на испарение воды и нагрев насыщенного пара, выводятся в атмосферу через дымовую трубу и искрогасительное устройство.

    Образованный в котле пар аккумулируется в колпаке-сухопарнике (в верхней части). При достижении давления пара свыше 105 Па, специальный предохранительный клапан его сбрасывает, выпуская избыток в атмосферу.

    Горячий пар под давлением подается через трубы к цилиндрам паровой машины, где он давит на поршень и шатунно-кривошипный механизм, приводя ко вращению ведущей оси. Отработанный пар поступает в дымовую трубу, создавая разрежение в дымовой коробке, что увеличивает поступление воздуха в топку котла.

    Схема работы

    То есть, если описывать принцип работы обобщенно, все кажется исключительно простым. Как выглядит схема устройства паровоза, можно увидеть и на фото, размещенном в статье.

    В паровом котле сжигается топливо, которое нагревает воду. Вода преобразовывается в пар, и, по мере нагрева, давление пара в системе увеличивается. Когда оно достигает высокого значения, то его подают в цилиндр, где располагаются поршни.

    За счет давления на поршни осуществляется вращение оси, и колеса приводятся в движение. Излишки пара выбрасываются в атмосферу через специальный предохранительный клапан. Кстати, роль последнего исключительно важна, ведь без него котел разорвало бы изнутри. Вот так выглядит устройство котла паровоза.

    Преимущества

    Как и другие типы обладают определенными достоинствами и недостатками. Плюсы следующие:

    1. Простота конструкции. Из-за несложного устройства паровой машины паровоза и его котла, наладить производство на машиностроительных и металлургических заводах было несложно.
    2. Надежность в работе. Упомянутая простота конструкции обеспечивает высокую надежность работы всей системе. Ломаться практически нечему, из-за чего паровозы работают в течение 100 и более лет.
    3. Мощная тяга при трогании.
    4. Возможность использования разных видов топлива.

    Ранее было такое понятие как "всеядность". Оно применялось к паровозам и определяло возможность использовать древесину, торф, уголь, мазут в качестве топлива для этой машины. Иногда локомотивы отапливали отходами производства: разными опилками, зерновой шелухой, щепой, бракованным зерном, отслужившими смазочными материалами.

    Конечно, тяговые возможности машины при этом снижались, однако это в любом случае позволяло экономить солидные средства, так как классический уголь стоит дороже.

    Недостатки

    Без недостатков тоже не обошлось:

    1. Низкий КПД. Даже на самых совершенных паровозах КПД составлял 5-9%. Это и логично, учитывая невысокий КПД самой паровой машины (около 20%). Неэффективность сгорания топлива, большие теплопотери при передаче тепла пара от котла к цилиндрам.
    2. Необходимость в огромных запасах топлива и воды. Особенно актуальной эта проблема становилась при эксплуатации машин в условиях засушливой местности (в пустынях, к примеру), где сложно раздобыть воду. Конечно, немного позже придумали паровозы с конденсацией отработанного пара, однако это не решало проблему полностью, а лишь упрощало ее.
    3. Пожароопасность, объясняемая открытым огнем сгорающего топлива. Этого недостатка нет на бестопочных паровозах, но дальность их следования ограничена.
    4. Дым и копоть, выбрасываемая в атмосферу. Серьезной эта проблема становится при движении паровозов в черте населенных пунктов.
    5. Тяжелые условия для бригады, которая обслуживает машину.
    6. Трудоемкость ремонта. Если в паровом котле что-то выходит из строя, то ремонт осуществляется долго и требует вложения средств.

    Несмотря на недостатки, паровозы очень ценились, так как их использование существенно подняло уровень промышленности в разных странах. Конечно, сегодня применение подобных машин не актуально, в силу наличия более современных двигателей внутреннего сгорания и электродвигателей. Тем не менее, именно паровозы положили начало созданию железнодорожного транспорта.

    В заключение

    Теперь вы знаете устройство двигателя паровоза, его особенности, плюсы и минусы эксплуатации. Кстати, сегодня на железнодорожных магистралях слаборазвитых стран (например, на Кубе) эти машины до сих пор применяются. До 1996 года они использовались и в Индии. В европейских странах, США, России этот вид транспорта существует лишь в виде памятников и музейных экспонатов.

    Давно искал эту статью (в детстве, к сожалению, изничтожил небольшой архив "Техники молодежи"). Стиль написания, конечно, в лучших традициях советского технократического романтизма:-), да и автор ярый приверженец паровой тяги, но идея все же интересная.

    ПАРОВОЗ XXI ВЕКА?

    «Ах, какая чудная картина, когда по рельсам мчится паровоз!» Сейчас и песню эту мало кто помнит, и саму «чудную картину». А ведь было! Окутываясь клубами дыма, солидно покрикивая на переездах, паровозы везли по магистралям тяжелые составы.

    В эпоху своего расцвета паровозы не без оснований считались шедеврами передовой инженерной мысли. Однако, пройдя более чем вековой путь развития, они уступили дорогу локомотивам с электрической тягой и тепловозам. 30 лет назад производство паровиков было прекращено, и вскоре они исчезли так же, как динозавры или мамонты. О былом величии паровой тяги свидетельствуют только отдельные музейные экземпляры.

    Чем же они оказались плохи?

    Критикуя какую-либо машину, обычно подчеркивают, что у нее КПД, как у паровоза. А какой он был? В монографии «Паровозы» (1949 г.) под редакцией академика С. П. Сыромятникова приведено значение 8,2%, достигнутое в опытном локомотиве Коломенского паровозостроительного завода.

    У серийных паровозов КПД не превышал 7,8%. Это значит, что меньше десятой части энергии сгоревшего угля шло на полезную работу, остальная, в прямом и переносном смысле, вылетает в трубу. Хватает у паровоза и недостатков, связанных с эксплуатацией. Вспомним хотя бы тяжелейшую процедуру удаления накипи из котла. Тот, кто мучился, очищая вручную свой чайник, поймет, чего это стоило. И все же интерес к этим динозаврам технической эволюции пробудился вновь.

    Какие же, ранее неведомые достоинства обнаружили у них специалисты? Может быть, мы и вправду скоро увидим мчащиеся по рельсам паровозы? Попробуем разобраться.

    Достоинством обернулось то, что раньше считалось недостатком, - топление углем. О паровозе в Харьковском политехническом вспомнили как раз потому, что он работает на угле. В уникальном Канско-Ачинском бассейне наиболее дешевым, открытым способом можно добывать очень много этого топлива, но оно обладает довольно низкой теплотворной способностью, и его дальнейшая транспортировка к месту потребления нерентабельна. Вот тут-то, возможно, и окажется целесообразным применение паровозов. Расходуя местный низкосортный уголь, они могут повысить Эффективность транссибирских перевозок. В топке паровоза прекрасно сгорают и такие угли. Более того, при сжигании угольной пыли полнота сгорания топлива увеличивается почти до 95%. Одно это позволяет значительно уменьшить тепловые потери котла. За прошедшие годы этот способ усовершенствовали для электростанций. Его применение вполне возможно и на паровозе.

    Итак, в пылеугольной топке энергия топлива почти полностью перешла в тепловую. Теперь ее надо «перекачать» в пар. Как это сделать наиболее эффективно? И опять ничего изобретать не надо, поскольку на тех же электростанциях прекрасно работают водотрубные котлы. Их конструкция рассчитана на высокое давление - это тоже вклад в повышение общего КПД паровоза. Перегрев пара, водо- и воздухоподогрев увеличивают КПД примерно на треть. Есть резервы и у самой паровой машины. Увеличить срок между чистками котла от накипи можно магнитной обработкой воды.

    Как видите, резервы у обновленного паровоза есть. Именно их использовали сотрудники и студенты Харьковского политехнического института, разрабатывая новые паровые локомотивы. Проекты убедительно доказали, что возможно создание паровозов с КПД вдвое, а то и в трое большим, чем в прошлом.

    Не вызывает сомнений, что современное состояние промышленности позволяет создать практически любой локомотив, например по одному из проектов ХПИ. Но от опытной машины до ее серийного производства путь не скор и не близок. А главное - он должен быть оправдан.

    Теперь слово за экономикой. Паровоз, конечно, не альтернатива другим типам локомотивов. Но, кто знает, может быть, и ему найдется работа на железных дорогах XXI века.


    КАКИМ ОН МОЖЕТ БЫТЬ?

    Спроектированный в ХПИ паровоз трехсекционный. В нем 4 четырехосных экипажа, а на крайних секциях еще по двухосной бегунковой тележке. Поэтому осевая формула выгладит довольно замысловато: 2-4-0+(0-4-0+0-4-0)+0-4-2 (в скобках часть формулы, относящаяся к средней секции). Ее симметрия иллюстрирует одинаковую приспособленность локомотива к движению передним и задним ходом.

    В бункере тендера 60 т специально приготовленной угольной пыли. Через 12 створок, каждая из которых имеет индивидуальный привод, он попадает в шнековый транспортер. Чтобы уголь не смерзался и не примерзал к стенкам, по всей наружной поверхности бункера расположены радиаторы обогрева. В морозы вентилятор будет закачивать туда отработанный горячий газ. Управлять подачей топлива - выбором степени и продолжительности открытия створок бункера, подбором скорости вращения шнека - будет, естественно, автоматика. Через форсунки топливо распыляется в факельной камере. Воздух для этого нагнетает центробежный вентилятор. Он прогоняет поток по специальным коробам, огибающим паровой котел. Нагретый воздух под давлением 0,3 атм и вдувает уголь. Горящая с температурой около 1500 о С смесь отдает тепло трубкам водотрубного котла, затем пароперегревателя, и наконец, водоподогревателя. Остывшие до 200 о С газы, очистив предварительно от золы, выбрасывают через дымовую трубу в атмосферу. Для очистки в поток газа впрыскивают воду. Водой же смывают и задержанную золу, которая накапливается в шлакосборном бункере. По предварительным оценкам, можно уловить до 95% пылеобразных шлаков, как раз и образовывавших традиционный дым. Так называемое мокрое шлакоудаление обеспечивает долговечность топки. Но самое главное - делает паровоз экологически чище.

    В котле вода, нагреваясь, поднимается по трубкам, превращается в пар. Под давлением 32 атм он через 16 комплектов электроуправляемых клапанов подается в паровые машины. Когда машинист открывает регулятор, он направляет пар либо в 1, либо в 2, 3,…и, наконец, во все 8 блоков цилиндров. Таим образом, у локомотива 8 ступеней регулирования тяги. Так называемый мятый пар из машины идет в верхнюю часть пароконденсатора, где его принудительно охлаждают атмосферным воздухом. Из водосборника регенерированную воду через подогреватель закачивают в нижнюю часть котла.

    Электроэнергией локомотив снабжают 2 генератора постоянного тока, один работает от паровой турбины, другой - только во время движения от бегунковой тележки пароконденсаторной секции. По расчетам, мощность его машин 8000 л. с., а КПД можно довести до 20-21%. Кроме того, за счет большого сцепного веса локомотив развивает тягу 65 тыс. кг.


    ЧТО ДЕЛАЕТСЯ ЗА РУБЕЖОМ?

    ПАРАМЕТРЫ ЛОКОМОТИВОВ С УГОЛЬНЫМ ОТОПЛЕНИЕМ

    Наименование параметра

    ХПИ

    Проект

    ACE 3000

    (США)

    Длина по сцепкам, м

    Мощность максимальная, л. с.

    8000

    3000

    Высота, м

    4,3

    4,3

    Вес снаряженный, т

    420

    порожний, т

    360

    Количество движущих колесных пар

    Котел: тип

    водотрубный

    огнетрубный

    давление , атм

    температура перегретого пара , о С

    500

    430

    Машина: тип

    однотактная

    компаунд

    количество ступеней расширения пара

    Запас топлива, т

    Паровозы проектируют и американские специалисты. Их на это побудил топливный кризис 70-х годов. Сейчас проходит испытания локомотив ACE 3000. Он оснащен огнетрубным котлом, пароперегревателем, водо- и воздухоподогревателями. Давление котлового пара достигает 17 атм, а температура перегретого пара 430 о С. По этим показателям паровик мало отличается от своих предшественников тридцатилетней давности. И все же на испытаниях его КПД был около 18%.

    Наиболее интересная новинка локомотива - топка, созданная аргентинцем Д. Порта. Процесс горения в ней протекает в две стадии. Сначала идет неполное сжигание угля, при этом образуется горючий газ с достаточно высокой температурой. Эта часть топки по принципу действия напоминает газогенератор. Тепло, выделенное при неполном сгорании угля, обогревает котел. Затем горючий газ очищают, пропуская сквозь распыленную воду, и смешивают с воздухом. Рабочая смесь сгорает в газовых каналах огнетрубного котла. Небольшая паровая турбина отсасывает продукты сгорания, прогоняет их сквозь многозвенный сепаратор (циклон), очищая от остатков золы. Так что вместо черного облака над локомотивом вьется лишь легкая дымка.

    Замкнутая система циркуляции воды и пара позволяет эксплуатировать локомотив без промывки котла целый год. Напомним, что старые паровозы требовали этой довольно сложной операции каждые 40-60 суток.

    В ACE 3000 есть и новинка в духе времени - это бортовой компьютер. Паровозная ЭВМ по своим задачам сродни автопилоту на самолете. Она тоже может управлять локомотивом, правда только после разгона поезда. Компьютер контролирует процесс горения топлива, следит за сцеплением колес с рельсами, выполняет другие функции, причем не только на самом паровозе, но и, например, на тепловозах, работающих вместе с ACE 3000 двойной тягой. Естественно, что тепловозы в этом случае должны быть оснащены аналогичными компьютерами.

    Интересно, что, исследуя около 30 первичных двигателей и их модификаций для локомотивов, американские специалисты расположили их в зависимости от расходов на годовую эксплуатацию. Паровая машина в этом списке оказалась третьей, несколько уступив в рентабельности газовой турбине и двигателю Стирлинга. Дизель, кстати, был только 14-м. Правда, эта классификация очень зависит от цены на нефть, которая сильно колеблется, но все же показательна.

    Специалисты считают, что пока паровоз требует более глубокой проработки. Только поездная работа опытного образца, а лучше нескольких машин, в реальных условиях на одной из крупнейших железных дорог раскроет все положительные и отрицательные свойства паровика нового поколения.

    Олег КУРИХИН, кандидат технических наук

    Журнал «Техника молодежи», 01-1987 г. (орфография и синтаксис сохранены)