• Что можно приготовить из кальмаров: быстро и вкусно

    Мы уже рассказывали, что технологий 3D-печати очень много, и регулярно появляются либо новые, либо модификации уже известных, поэтому мы не будем пытаться объять необъятное и подробнее расскажем лишь о наиболее интересных и распространенных.

    Начнем, конечно, со стереолитографии, которая исторически была самой первой.

    Стереолитография (StereoLithography Apparatus, SLA)

    Исходным продуктом является жидкий фотополимер, в который добавлен специальный реагент-отвердитель, и эта смесь напоминает всем известную эпоксидную смолу, только в обычном состоянии она остается жидкой, а полимеризуется и становится твердой под воздействием ультрафиолетового лазера.

    Естественно, лазер не может сразу создать всю модель в толще полимера, и речь может идти только о последовательном построении тонкими слоями. Поэтому используется подвижная подложка с отверстиями, которая с помощью микролифта-элеватора погружается в фотополимер на толщину одного слоя, затем лазерный луч засвечивает области, подлежащие отверждению, подложка погружается еще на толщину одного слоя, вновь работает лазер, и так далее.

    Не обходится и без существенных сложностей. Во-первых, требования к самому фотополимеру достаточно противоречивы: если он будет густым, то его легче полимеризовать, но сложнее обеспечить ровную поверхность после каждого шага погружения; приходится использовать специальную линейку, которая на каждом шаге проходит по поверхности жидкости и выравнивает ее. Большое количество отвердителя при фиксированной мощности лазера позволит уменьшить необходимое время воздействия, однако неизбежная фоновая засветка «портит» окружающий объем полимера и сокращает возможный срок его использования.

    Во-вторых, полная полимеризация каждого слоя заняла бы немало времени, поэтому засветка производится до уровня, при котором слой приобретает лишь минимально необходимую прочность, а впоследствии готовую модель, предварительно промыв от остатков жидкого полимера, приходится облучать мощным источником в специальной камере, чтобы полимеризация достигла 100%.

    Плюсы технологии понятны:

    • можно получить очень высокое разрешение печати, т. е. достичь хорошей точности при изготовлении моделей, которая по вертикали зависит в основном от возможностей элеватора, погружающего платформу, и обычно составляет 100 мкм, а в лучших аппаратах и меньше, до 25–50 мкм; по горизонтали точность определяется фокусировкой лазерного луча, вполне реальным является диаметр «пятна» в 200 мкм; соответственно и качество поверхности даже без дополнительной обработки получается высоким;
    • можно получать очень большие модели, размером до 150×75×55 см и весом до 150 кг;
    • механическая прочность получаемых образцов достаточно высока, они могут выдерживать температуру до 100 °С;
    • очень мало ограничений на сложность модели и наличие у нее мелких элементов;
    • малое количество отходов;
    • легкость финишной обработки, если таковая вообще потребуется.
    • ограниченный выбор материалов для изготовления моделей;
    • невозможность цветной печати и сочетания разных материалов в одном цикле;
    • малая скорость печати, максимум 10–20 миллиметров в час по вертикали;
    • очень большие габариты и вес: так, один из SLA-аппаратов 3D Systems ProX 950 весит 2,4 тонны при размерах 2,2×1,6×2,26 м.

    Хотя мы упомянули ограниченность спектра расходных материалов, но всё же выбор есть, и можно получать модели с разными свойствами: с повышенной термостойкостью, гибкие, с высокой стойкостью к абразивам. Правда, с цветами хуже: доступно очень ограниченное количество, включая белый, серый, а также полупрозрачный.

    Но главный минус - высокая цена как самих принтеров (сотни тысяч долларов), так и расходных материалов (две-три тысячи долларов за 10-килограммовый картридж), поэтому сколь-нибудь массово SLA-аппараты не встречаются.

    Выборочное лазерное спекание (Selective Laser Sintering, SLS)

    Этот метод появился примерно в то же время, что и SLA, и даже имеет с ним много общего, только вместо жидкости используется порошок с диаметром частиц 50–100 мкм, тонкими равномерными слоями распределяемый в горизонтальной плоскости, а потом лазерный луч спекает участки, подлежащие отверждению на данном слое модели.

    Исходные материалы могут быть самые разные: металл, пластик, керамика, стекло, литейный воск. Порошок наносится и разравнивается по поверхности рабочего стола специальным валиком, который при обратном проходе удаляет излишки порошка. Затем работает мощный лазер, спекающий частицы друг с другом и с предыдущим слоем, после чего стол опускается на величину, равную высоте одного слоя. Для снижения мощности лазера, необходимой для спекания, порошок в рабочей камере предварительно нагревается почти до температуры плавления, а сам лазер работает в импульсном режиме, поскольку для спекания важнее пиковая мощность, а не длительность воздействия.

    Частицы могут расплавляться полностью или частично (по поверхности). Незапеченный порошок, остающийся вокруг отвердевших слоев, служит поддержкой при создании нависающих элементов модели, поэтому нет необходимости в формировании специальных поддерживающих структур. Но этот порошок по окончании процесса необходимо удалить как из камеры, особенно если следующая модель будет создаваться из другого материала, так и из полостей уже изготовленной модели, что можно сделать лишь после ее полного остывания.

    Зачастую требуется финишная обработка - например, полировка, поскольку поверхность может получаться шероховатой или с видимой слоистостью. Кроме того, материал может использоваться не только чистый, но и в смеси с полимером или в виде частиц, покрытых полимером, остатки которого нужно удалить путем выжигания в специальной печи. Для металлов одновременно происходит заполнение возникающих пустот бронзой.

    Поскольку речь идет о высоких температурах, необходимых для спекания, процесс происходит в азотной среде с малым содержанием кислорода. При работе с металлами это еще и предотвращает окисление.

    Серийно выпускаемые установки SLS позволяют работать с достаточно большими объектами, до 55×55×75 см.

    Габариты и вес самих установок, как и SLA, достаточно впечатляющие. Так, аппарат Formiga P100, изображенный на фото, при довольно скромных размерах изготавливаемых моделей (рабочая зона 20×25×33 см) имеет размеры 1,32×1,07×2,2 м при весе 600 кг, и это без учета таких опций, как установки для смешивания порошка и системы очистки-фильтрации. Причем работать P100 может только с пластиками (полиамид, полистирол).

    Вариантами технологии являются:

    1. Селективное лазерное плавление (Selective Laser Melting, SLM) , которое используется для работы с чистыми металлами без примесей полимера и позволяет создать готовый образец за один этап.
    2. Электронно-лучевое плавление (Electron Beam Melting, EBM) с использованием электронного луча вместо лазера; эта технология требует работы в вакуумной камере, но позволяет использовать даже такие металлы, как титан.

    Встречаются и такие названия, как Direct Metal Fabrication (DMF) , а также Direct Manufacturing .

    Принтер SPRO 250 Direct Metal производства 3D Systems, который, как понятно из названия, может работать с металлами по технологии SLM, с рабочей камерой 25×24×32 см имеет размер 1,7×0,8×2 метра и вес 1225 кг. Заявленная скорость от 5 до 20 кубических сантиметров в час, и можно сделать вывод, что модель объемом со стакан будет изготавливаться минимум 10 часов.

    • широкий спектр материалов, пригодных для использования;
    • позволяет создавать очень сложные модели;
    • скорость в среднем выше, чем у SLA, и может достигать 30–40 мм в час по вертикали;
    • может использоваться не только для создания прототипов, но и для мелкосерийного производства, в т. ч. ювелирных изделий;
    • требуются мощный лазер и герметичная камера, в которой создается среда с малым содержанием кислорода;
    • меньшее, чем у SLA, максимальное разрешение: минимальная толщина слоя 0,1–0,15 мм (в зависимости от материала может быть и немного менее 0,1 мм); по горизонтали, как и в SLA, точность определяется фокусировкой лазерного луча;
    • требуется долгий подготовительный этап для прогрева порошка, а затем нужно ждать остывания полученного образца, чтобы можно было удалить остатки порошка;
    • в большинстве случаев требуется финишная обработка.

    Цена на установки SLS еще выше, чем SLA, и может достигать миллионов долларов. Однако отметим, что в феврале 2014 года истек срок патентов на технологию SLS, поэтому вполне можно спрогнозировать увеличение количества компаний, предлагающих подобную технику, а соответственно и заметное снижение цен. Тем не менее, вряд ли в ближайшие годы цены снизятся столь существенно, что SLS-печать станет доступной хотя бы малому бизнесу, не говоря уже о частных энтузиастах.

    Поскольку материалы очень разнообразны, мы не приводим ориентировочных цен.

    Метод многоструйного моделирования (Multi Jet Modeling, MJM)

    Принтеры, основанные на данной технологии, выпускаются компанией 3D Systems. В связи с патентными ограничениями есть и названия, используемые другими производителями принтеров: PolyJet (Photopolymer Jetting, компания Stratasys), DODJet (Drop-On-Demand Jet, компания Solidscape). Конечно, отличия не только в названиях, но базовые принципы похожи.

    Процесс очень напоминает обычную струйную печать: материал подается через сопла малого диаметра, расположенные рядами на печатающей головке. Количество сопел может быть от нескольких штук до нескольких сотен. Конечно, материал не является жидким при комнатной температуре: сначала он нагревается до температуры плавления (как правило, не очень высокой), затем подается в головку, наносится послойно и застывает. Слои формируются перемещением головки в горизонтальной плоскости, а вертикальное смещение при переходе к следующему слою, как и в предыдущих случаях, обеспечивается опусканием рабочего стола. В варианте DODJet добавляется этап обработки слоя фрезерной головкой.

    В качестве материала для MJM-принтеров используют пластики, фотополимеры, специальный воск, а также материалы для медицинских имплантов, зубных слепков и протезов. Возможна и комбинация разных материалов: в отличие от предыдущих двух технологий, выступающие под большим углом элементы моделей или горизонтальные перемычки во избежание провисаний требуют применения поддерживающих структур, которые при финишной обработке приходится удалять. Чтобы не делать это вручную, можно применить для поддержек материал с меньшей температурой плавления, чем для собственно модели, и потом удалить его расплавлением в специальной печи. Другой вариант - использование для поддержек материала, который удаляется растворением в специализированном растворе, а порой и просто в воде.

    Использование фотополимера, как и в стереолитографии, потребует отверждения ультрафиолетом, поэтому напечатанный слой засвечивается УФ-лампой. Воск же затвердевает при естественном охлаждении. Конечно, восковые модели не отличаются особой прочностью, но их очень легко использовать при изготовлении форм для литья.

    Как и в обычной струйной печати, использование материалов разного цвета позволит создавать за один цикл многоцветные модели, а смешение базовых цветов даст возможность получать множество оттенков. Кроме этого, можно сочетать в одной модели материалы с разными свойствами - например, твердые и эластичные.

    Перейдем к примерам.

    Компактный принтер Solidscape 3Z max при собственных размерах 56×50×42 см и весе 34 кг позволяет создавать модели размерами до 152×152×101 мм, обеспечивая разрешение 5000×5000 dpi (197×197 точек/мм) по осям X, Y и 8000 dpi (158 точек/мм) по оси Z. Его цена около $50 000, но в линейке 3Z есть и более дешевые модели.


    В этих принтерах как раз и используется воск двух типов: более тугоплавкий (95–115 °С) для собственно моделей и легкоплавкий (50–72 °С) для поддерживающих структур, которые потом удаляются при низких температурах с помощью специального раствора.


    Приблизительная стоимость: воск для моделей 3Z LabCast - $260–270 за 360 г, воск для поддержек $200–210 за 230 г. Как видите, к очень уж дешевым такие расходные материалы не отнесешь.

    • достижимы очень малая толщина слоя (от 16 мкм) и разрешение построения поверхности (до 8000 dpi);
    • возможность многоцветной печати и сочетания материалов с разными свойствами;
    • принтеры могут быть достаточно компактными, особенно в сравнении с предыдущими двумя технологиями.
    • для моделей с нависающими или горизонтально выступающими элементами требуются поддержки, которые приходится тем или иным способом удалять;
    • ограниченный выбор материалов для работы.

    Послойное склеивание пленок (Laminated Object Manufacturing, LOM)

    Тонкие листы материала раскраиваются лазерным лучом или специальным лезвием, а потом тем или иным способом соединяются между собой. Для создания 3D-моделей может использоваться не только пластик, но даже бумага, керамика или металл.

    Поскольку разных моделей очень много, рассмотрим один очень характерный пример - цветной 3D-принтер Mcor IRIS, продемонстрированный компанией Mcor Technologies на выставке SolidWorks World 2013. Он использует в качестве материала самые обычные листы бумаги формата А4 или Letter плотностью 160 г/м², которые окрашиваются в необходимый цвет. Разрешение печати 5760×1440×508 точек на дюйм, а максимальный размер создаваемых объектов составляет 256×169×150 мм. При этом обеспечивается полноцветная печать с передачей более миллиона цветов.

    На фото изображен 3D-принтер на подставке; габариты самого принтера 95×70×80 см, вес 160 кг. В подставке размером 116×72×94 см и весом еще 150 кг скрывается цветной 2D-принтер.

    Создание модели ведется в несколько этапов: на первом пачка бумаги загружается в 2D-принтер и на каждом из листов в цвете печатается нужный слой.


    Затем отпечатанные листы переносятся оператором в 3D-принтер, где специальным лезвием на каждом из них делается прорезь по границе нанесенного изображения, а потом листы склеиваются между собой. На третьем этапе оператор вручную удаляет лишнюю бумагу, не содержащую изображения, что для сложных моделей может занять немало времени.

    Как вы уже поняли, в процессе работы получается довольно много отходов: если размер данного сечения модели гораздо меньше А4 или Letter, то остальная часть листа пойдет в корзину; помножьте на количество сечений и представьте, сколько бумаги будет выброшено.

    Модели получаются очень впечатляющими и довольно прочными, а их себестоимость кажется копеечной - бумага ведь дешевая!

    Но ведь потребуется еще и клей для соединения слоев (около $70 за 600 мл), и картриджи с красителями стандартных цветов CMYK (около $700 за набор из 4 картриджей по 320 мл или $195 за каждый картридж по отдельности), которых, по оценке производителя, хватает в среднем на 48 моделей. Получается не так и дешево, а цена самого аппарата впечатляет еще больше: на Западе упоминаются цены от $47 600, а на российском рынке предложения и вовсе начинаются от двух миллионов рублей.

    Есть и естественное ограничение на толщину слоя, равную толщине листа бумаги. Это очень хорошо заметно на следующей модели:


    На примере Mcor IRIS перечислим основные достоинства и недостатки, многие из которых присущи и другим принтерам, основанным на технологии LOM.

    • возможность полноцветной печати с высоким разрешением по осям X и Y;
    • доступность и относительная дешевизна главного расходного материала - бумаги;
    • можно создавать довольно большие модели;
    • для моделей с нависающими или горизонтально выступающими элементами не требуется формирование поддерживающих структур.
    • крайне ограниченный набор материалов для создания моделей (в Mcor IRIS - только бумага), а отсюда и ограничения на прочностные и другие свойства создаваемых образцов;
    • толщина слоя всецело зависит от толщины используемого листового материала, из-за чего модель порой получается грубой, а механическая обработка для сглаживания возможна не всегда, поскольку может привести к расслоению;
    • наличие немалого количества отходов, причем если горизонтальные проекции модели гораздо меньше листа А4/Letter, то отходов получается очень много; избежать этого можно одновременным изготовлением нескольких небольших образцов;
    • всегда требуется финишная обработка, связанная с удалением лишнего материала, она лишь может быть проще или сложнее в зависимости от свойств модели; причем если модель имеет полости с ограниченным доступом, то удалить из них лишнее может быть попросту невозможно.

    Раз уж мы упомянули полноцветную печать, которая в технологии LOM хоть и реализуется, но всё же на основе обычной 2D-печати, нельзя не рассказать и о трехмерной печати из гипсового композита.

    3D Printing (3DP, 3D-печать)

    Как и в SLS, основой для будущего объекта является порошок (гипсовый композит), только он не спекается, а послойно склеивается введением связующего вещества.

    Для построения очередного слоя модели по всей площади рабочего стола валиком наносится и разравнивается порошок, в который печатающей головкой, напоминающей струйную, по форме данного сечения модели вводится жидкий клей. Кстати: есть упоминания, что головки разрабатываются Hewlett-Packard. Затем стол с уже созданными слоями опускается и процесс повторяется нужное количество раз, а по окончании происходит нагрев для ускорения высыхания клеящего состава. После этого лишний порошок, оставшийся несвязанным, удаляется: в основном автоматически, возвращаясь в бункер для последующей работы, а из сложнодоступных мест - струей воздуха (станция очистки может быть встроена в дорогие модели) или кистью.

    Но в получившейся модели остаются поры - пространство между частичками порошка, а поверхность получается шероховатой. Для придания нужных свойств (гладкости, прочности, малой гигроскопичности) ее нужно обработать специальным составом-закрепителем. В его качестве может выступать раствор английской соли (гептагидрат сульфата магния), воск, парафин, цианокрилаты и эпоксидная смола; часть из них можно наносить простым опрыскиванием или погружением, а для других используются специальные станции.

    Откуда же берется полноцветная печать, если порошок один и тот же? А очень просто: красители вводятся в связующее вещество, и их смешение позволяет получить от 64 до 390 000 оттенков. Причем некоторые типы закрепителей позволяют сделать цвета очень яркими.

    Такой способ используется в серии ZPrinter, выпускавшейся компанией ZCorporation, которая в 2011 году была поглощена 3D Systems, после чего серия получила название ProJet и несколько иной внешний вид. В серию входят и цветные, и монохромные принтеры с размерами рабочих камер до 508×381×229 мм. Толщину слоя можно задавать ступенями от 0,089 до 0,125 мм, а скорость работы может достигать 2700 см³/час.

    Младшая модель серии, принтер ProJet 160 (ZPrinter 150), в России продается по цене свыше 700 тысяч рублей, имеет рабочую камеру 236×185×127 мм, единственно возможную толщину слоя 0,1 мм. Габариты аппарата 740×790×1400 мм при весе 165 кг.

    Обеспечиваемое этим аппаратом разрешение составляет 300 dpi по оси X, 450 dpi по Y и 250 dpi (т. е. 0,1 мм) по Z. Печатающая головка имеет 304 сопла, а скорость работы 870 см³/час. Поскольку используется композитный гипсовый материал белого цвета, то и модели получаются белыми; возможности цветной печати нет. Восьмикилограммовое ведро порошка стоит около $1000, а набор 2×1 л прозрачной связующей жидкости $600.

    Самый дешевый цветной принтер серии, ProJet 260C (ZPrinter 250), обойдется уже примерно в 1,2–1,3 миллиона рублей. Параметры его примерно те же, что и у ProJet 160, а количество доступных цветов ограничено 64. Цена на младший из полноцветных принтеров, ProJet 460Plus (ZPrinter 450), почти вдвое выше.

    • позволяет создавать очень сложные модели без поддерживающих структур;
    • возможность полноцветной печати с высоким разрешением.
    • крайне ограниченное количество материалов, пригодных для использования;
    • в ряде случаев требуется финишная обработка, особенно когда нельзя мириться с шероховатой поверхностью;
    • малая прочность получившихся образцов даже после обработки закрепляющим составом.

    Теперь переходим к технологии, которая в последнее время стала наиболее распространенной, и рассмотрим ее наиболее подробно, поскольку в последующих обзорах мы будем иметь дело с принтерами на основе именно этой технологии.

    Послойное наплавление (Fusing Deposition Modeling, FDM)

    Как и во всех остальных рассмотренных нами технологиях, модель при FDM-печати создается послойно. Для изготовления очередного слоя термопластичный материал нагревается в печатающей головке до полужидкого состояния и выдавливается в виде нити через сопло с отверстием малого диаметра, оседая на поверхности рабочего стола (для первого слоя) или на предыдущем слое, соединяясь с ним. Головка перемещается в горизонтальной плоскости и постепенно «рисует» нужный слой - контуры и заполнение между ними, после чего происходит вертикальное перемещение (чаще всего опусканием стола, но есть модели, в которых приподнимается головка) на толщину слоя и процесс повторяется до тех пор, пока модель не будет построена полностью.

    В качестве расходного материала чаще всего используются различные пластики, хотя есть и модели, позволяющие работать с другими материалами - оловом, сплавами металлов с невысокой температурой плавления и даже шоколадом.

    Минусы, присущие данной методике, очевидны:

    • невысокая скорость работы (но, собственно, очень уж высокой скоростью не могут похвастать и другие технологии: для построения крупных и сложных моделей требуются многие часы и даже десятки часов);
    • небольшая разрешающая способность как по горизонтали, так и по вертикали, что приводит к более или менее заметной слоистости поверхности изготовленной модели;
    • проблемы с фиксацией модели на рабочем столе (первый слой должен прилипнуть к поверхности платформы, но так, чтобы готовую модель можно было снять); их пытаются решить разными способами - подогревом рабочего стола, нанесением на него различных покрытий, однако совсем и всегда избежать не получается;
    • для нависающих элементов требуется создание поддерживающих структур, которые впоследствии приходится удалять, но даже с учетом этого некоторые модели попросту невозможно сделать на FDM-принтере за один цикл, и приходится разбивать их на детали с последующим соединением склейкой или другим способом.

    Таким образом, для очень многих образцов, изготовленных по технологии FDM, потребуется более или менее сложная финишная обработка, которую сложно или невозможно механизировать, поэтому в основном она производится вручную.

    Есть и менее очевидные недостатки, например, зависимость прочности от направления, в котором прикладывается усилие. Так, можно сделать образец достаточно прочным на сжатие в направлении, перпендикулярном расположению слоев, но вот на скручивание он будет гораздо менее прочным: возможен разрыв по границе слоев.

    Другой момент в той или иной мере присущ любой технологии, связанной с нагревом: это термоусадка, которая приводит к изменению размеров образца после остывания. Конечно, тут много зависит от свойств используемого материала, но порой нельзя примириться даже с изменениями в несколько десятых долей процента.

    Далее: технология может показаться безотходной только на первый взгляд. И речь не только о поддерживающих структурах в сложных моделях, немало пластика уходит в отходы даже у опытного оператора при подборе оптимального для конкретной модели режима печати.

    Почему же при таком количестве проблем эта технология сейчас стала столь популярной?

    Главная и определяющая причина - цена как на сами принтеры, так и на расходные материалы к ним. Первым важным толчком в процессе продвижения FDM-принтеров «в массы» стало истечение в 2009 году срока действия патентов, вследствие чего за пять лет цены на такие принтеры снизились более чем на порядок, а если рассмотреть крайности (самые дорогие до 2009 года и самые дешевые сегодня), то и на два порядка: цена на самые дешевые принтеры китайского производства сегодня составляет всего 300–400 долларов - правда, скорее всего покупатель в них моментально разочаруется. Более приличные принтеры начального уровня сейчас имеют цену уже ближе к $1200–1500.

    Вторым немаловажным фактором стало появление проекта RepRap , или Replicating Rapid Prototyper - самовоспроизводящийся механизм быстрого прототипирования. Самовоспроизведение касается изготовления на уже сделанном принтере частей для другого подобного принтера - конечно, не всех, а лишь тех, которые можно создать в рамках данной технологии, всё прочее приходится покупать. И оно не было самоцелью проекта: главной задачей стало создание максимально дешевых моделей принтеров, доступных даже частным энтузиастам, не обремененным излишком денег, но желающим попробовать свои силы в 3D-печати. Более того, самовоспроизводящимися (в сколь-нибудь заметной части всех деталей) были и есть далеко не все прототипы, созданные в рамках RepRap.

    Мы не будем заниматься подробным описанием этапов становления проекта RepRap, разбором достоинств и недостатков таких прототипов, как Darwin, Mendel, Prusa Mendel, Huxley. Тема очень обширна, чтобы ее можно было рассмотреть в рамках данного обзора, и мы приводим эти названия только как ключевые слова для поиска информации, которой в интернете очень много.

    Конечно, создаваемые таким образом принтеры чаще всего далеки от совершенства даже в рамках технологии FDM, но они позволяют с минимальными финансовыми затратами создать вполне работоспособный аппарат. Нужно отметить: сегодня вовсе не обязательно искать обладателя принтера, чтобы напечатать возможные детали, и бегать по магазинам в поисках остального; предлагаются полные наборы для самостоятельной сборки принтера, так называемые DIY kits (от «Do It Yourself» - сделай это сам), которые позволяют и заметно сэкономить, и избежать лишней беготни и хлопот, да к тому же содержат подробные инструкции по сборке. Но есть простор и для тех, кто не хочет замыкаться в рамки готовых конструкций и желает внести в них что-то свое: есть масса предложений по любым отдельным комплектующим для подобных принтеров.

    Еще одна положительная сторона развития проекта RepRap - появление и совершенствование различного программного обеспечения для работы с подобными 3D-принтерами, причем распространяемого свободно. В этом немаловажное отличие от аппаратов, выпускаемых именитыми производителями, которые работают только с собственным ПО.

    В принципе, проект не замыкается на технологии FDM, но пока именно она является наиболее доступной, равно как наиболее доступным материалом является пластиковая нить, которая и используется в подавляющем большинстве принтеров, создаваемых на базе разработок RepRap.

    Широкое распространение FDM-принтеров привело к увеличению спроса на расходные материалы к ним; предложение не могло не последовать за спросом, и произошло то же самое, что и с самими принтерами: цены рухнули. Если на старых интернет-страницах, посвященных FDM-технологиям, встречаются упоминания цен на уровне 2-3 и даже более сотен евро за килограмм пластиковой нити, то сейчас повсеместно речь идет о десятках евро, и лишь на новые материалы с необычными свойствами цена может достигать сотни долларов или евро за килограмм. Правда, если раньше продавались в основном «фирменные» материалы, то теперь зачастую предлагается нить непонятного происхождения и неопределенного качества, но это неизбежно сопутствует популярности.

    Помимо цены, у FDM-принтеров есть другие достоинства, связанные с возможностями технологии. Так, очень легко оснастить принтер второй печатающей головкой, которая может подавать нить из легко удаляемого материала для создании поддержек в сложных моделях. Внеся краситель при изготовлении пластиковой нити, можно получать различные, очень яркие цвета.

    Да и сам материал нити может иметь самые разные свойства, поэтому рассмотрим вкратце наиболее распространенные типы.

    Пластиковая нить может быть двух стандартных диаметров: 1,75 и 3 мм. Естественно, они не взаимозаменяемы, и выбор нужного диаметра следует уточнять по спецификации принтера. Поставляется пластик на катушках и измеряется не длиной, а весом. Для FDM-принтеров некоторых производителей (например, CubeX от 3D Systems) нужно покупать не катушки, а специальные картриджи с нитью, которые в пересчете на килограмм обходятся заметно дороже, но производитель гарантирует качество материала - словом, всё точно так, как в обычных принтерах: «оригинальная» и «совместимая» расходка.

    Для каждого типа материала должны быть известны рабочая температура, до которой должен нагреваться материал в печатающей головке, и температура подогрева рабочего стола (платформы) для лучшего прилипания первого слоя. Эти величины не всегда одинаковы для любого образца нити, сделанной из материала одного типа, поэтому мы указываем примерный диапазон; по идее, оптимальные температуры должны указываться на этикетке катушки или в сопроводительном документе, но это происходит далеко не всегда, и зачастую их приходится подбирать экспериментально.

    Основными материалами для FDM-принтеров являются пластики ABS и PLA.

    ABS (акрилонитрилбутадиенстирол, АБС) - это ударопрочная техническая термопластическая смола на основе сополимера акрилонитрила с бутадиеном и стиролом. Сырьем для его производства является нефть. Этот пластик непрозрачный, легко окрашивается в разные цвета.

    Достоинства ABS:

    • долговечность,
    • ударопрочность и относительная эластичность,
    • нетоксичность,
    • влаго- и маслостойкость,
    • стойкость к щелочам и кислотам,
    • широкий диапазон эксплуатационных температур: от −40 °С до +90 °С, у модифицированных марок до 103–113 °С.

    К достоинствам следует отнести невысокую стоимость, растворимость в ацетоне (что позволяет не только склеивать детали из ABS, но также сглаживать с помощью ацетона неровную поверхность). ABS более жесткий, чем PLA, и потому сохраняет форму при больших нагрузках.

    Из недостатков надо упомянуть следующие:

    • несовместимость с пищевыми продуктами, особенно горячими, поскольку при определенных условиях (высокой температуре) может выделять циановодород,
    • неустойчивость к ультрафиолетовому излучению (т. е. не любит прямых солнечных лучей),
    • термоусадка заметно выше, чем у PLA,
    • более хрупкий, чем PLA.

    Рабочая температура выше, чем у PLA, и находится в диапазоне 210–270 °С. При работе с нитью ABS ощущается слабый запах. Кроме того, для лучшего прилипания первого слоя модели к рабочему столу требуется подогрев стола примерно до 110 градусов.

    Про цену: встречаются упоминания $30–40 за килограммовую катушку. Реально цены в России начинаются от 1500 (мелкий опт) до 2000 и более (розница) рублей за килограмм, если речь идет о китайских производителях. ABS-нить от известных фирм, изготовленная в США, может быть в полтора-два раза дороже.

    PLA (полилактид, ПЛА) - биоразлагаемый, биосовместимый полиэфир, мономером которого является молочная кислота. Сырьем для производства служат возобновляемые ресурсы - например, кукуруза или сахарный тростник, поэтому материал является нетоксичным и может применяться для производства экологически чистой упаковки и одноразовой посуды, а также в медицине и в средствах личной гигиены.

    Сразу отметим: биоразлагаемость вовсе не синоним крайней недолговечности, изделия из PLA вполне жизнеспособны.

    Достоинства:

    • низкий коэффициент трения, делающий его пригодным для изготовления подшипников скольжения,
    • малая термоусадка, особенно в сравнении с ABS,
    • менее хрупкий и более вязкий, чем ABS: при одинаковых нагрузках скорее согнется, чем сломается.

    Рабочая температура ниже, чем у ABS: около 180–190 °С. Подогрев рабочего стола не является обязательным, но желательно всё же нагревать стол до 50–60 °С.

    Недостатки: один из них мы уже упомянули - меньшую, чем у ABS, долговечность. Кроме того, PLA более гигроскопичен, и даже при хранении требует соблюдения режима влажности, иначе может начаться расслоение материала и появление в нем пузырьков, что приведет к дефектам при изготовлении модели. К тому же PLA зачастую немного дороже ABS, хотя цена сильно зависит от производителя и продавца.

    Ацетон практически не оказывает воздействия на PLA, его приходится склеивать и обрабатывать дихлорэтаном, хлороформом или другими хлорированными углеводородами, что требует повышенных мер безопасности при работе (но, конечно, и ацетон в этом плане не подарок).

    Другие материалы для FDM-печати распространены гораздо меньше.

    HIPS (High-impact Polystyrene, ударопрочный полистирол) - материал непрозрачный, жесткий, твердый, стойкий к ударным воздействиям, к морозу и перепадам температур. Растворяется в лимонене - естественном растворителе, извлекаемом из цитрусовых, и потому может использоваться для создания поддерживающих структур, которые не придется удалять механически.

    Рабочая температура около 230 °С, цена на 30–50% выше, чем у ABS.

    Нейлон легкий, гибкий, устойчивый к химическому воздействию. Детали из него обладают очень низким поверхностным трением.

    Рабочая температура выше, чем у PLA: около 240–250 °С. Правда, при этом не выделяется паров или запахов. Стоимость нейлоновой нити в два раза больше, чем PLA или ABS.

    PC (Polycarbonate, поликарбонат) - довольно твёрдый полимер, сохраняющий свои свойства в диапазоне температур от −40 °С до 120 °С. Обладает высоким светопропусканием и часто используется в качестве заменителя стекла, а поскольку еще имеет меньшую удельную массу и более высокий коэффициент преломления, то прекрасно подходит для производства линз. Полная биологическая инертность позволяет делать из него даже контактные линзы. Кроме того, из него изготавливают компакт-диски.

    Температура печати 260–300 °С. В виде нити для FDM-печати пока выпускается мало, поэтому цена втрое выше, чем у ABS.

    Похожими оптическими свойствами обладает PETT (Polyethylene terephthalate, полиэтилентерефталат). Модели из него получаются очень прочными, поскольку слои расплавленного материала отлично склеиваются. Рабочая температура 210–225 °С, стол желательно подогреть до 50–80 °С. Цена около 4500–5000 рублей за килограмм.

    Под аббревиатурой PVA (ПВА) могут скрываться два типа материала: поливинилацетат (Polyvinyl Acetate, PVAc) и поливиниловый спирт (Polyvinyl Alcohol, PVAl). По химической формуле они довольно похожи, только в поливиниловом спирте отсутствуют ацетатные группы, и свойства их тоже совпадают - во многом, но не во всем. К сожалению, продавцы зачастую указывают просто «PVA (ПВА)», не делая различий, поэтому мы можем привести только обобщенную примерную цену: 4500–5000 рублей за килограмм нити.

    Поливиниловый спирт PVAl требует рабочей температуры около 180–200 °С, дальнейшее ее повышение нежелательно - может начаться пиролиз (термическое разложение). Кроме того, материал очень гигроскопичен, он активно поглощает влагу из воздуха, что создает проблемы и при хранении, и при печати, особенно если диаметр нити 1,75 мм. С другой стороны, это же свойство является очень полезным: поддержки, сделанные из PVAl, растворяются в холодной воде.

    Поливинилацетат PVAc всем хорошо известен как составная часть клея ПВА, представляющего собой водную эмульсию этого вещества. Для него требуется немного более низкая рабочая температура: 160–170 градусов. Он также хорошо растворяется в воде.

    Все время появляются новые материалы с оригинальными свойствами. Правда, цена на них в первое время может быть очень высокой.

    Например, эластомер NinjaFlex позволяет создавать эластичные изделия. Цена около 7500–8000 рублей за килограмм, рабочая температура 210–225 °С, температура стола может быть комнатной или слегка повышенной, до 35–40 °С.

    Недавно появившийся материал Laywoo-D3 интересен прежде всего тем, что изделия из него по фактуре напоминают дерево и даже пахнут, как деревянные. Дело в том, что его как раз и делают на основе мелких частиц дерева и связующего полимера. Рабочие температуры могут быть в диапазоне 175–250 °С, подогрев стола не требуется. Причем цвет после застывания будет зависеть от выбранной температуры: чем она выше, тем темнее. Меняя температуру во время печати, можно даже получить подобие годовых колец, как на натуральном дереве. Конечно, и цена на этот материал немалая - около 10 тысяч рублей за килограмм.

    Другой экзотический материал, Laybrick , содержит минеральные наполнители и позволяет имитировать изделия из песчаника. Рабочая температура находится в пределах 165–210 °С; на этот раз с повышением температуры можно получить более грубую поверхность для усиления эффекта имитации. Он также не требует подогрева стола, но по окончании печати следует выждать несколько часов, чтобы модель окончательно затвердела, и лишь потом снимать ее. Цена те же 10 тысяч рублей за килограмм.

    Конечно, все указанные выше цены являются лишь ориентиром: они могут меняться как по прошествии времени, так и от продавца к продавцу, особенно если покупать не в России, а заказывать за рубежом.

    Поскольку наш обзор рассчитан в основном на тех, кто недавно заинтересовался 3D-печатью и пока не имеет собственного опыта работы в этой сфере, отметим: лучше всего начинать с «курса молодого бойца», и даже порекомендуем (по ссылке можно скачать программу курсов и найти контактные координаты). Помимо рассказа о теоретических основах, каждому «курсанту» предоставляется возможность поработать на весьма неплохом FDM-принтере под руководством знающих специалистов. Конечно, курсы коммерческие, т. е. платные, но потраченные деньги быстро окупятся, поскольку вы получите знания о том, как избежать самых частых ошибок, и практический опыт, пусть и небольшой.

    На этом мы завершаем обзор, чтобы вскоре перейти к другим аспектам 3D-печати и конкретным моделям принтеров.

    Вконтакте

    Одноклассники

    3D печать – это выполнение ряда повторяющихся операций, связанных с созданием объёмных моделей путём нанесения на рабочий стол установки тонкого слоя расходных материалов , смещением рабочего стола вниз на высоту сформированного слоя и удалением с поверхности рабочего стола отработанных отходов. Циклы печати непрерывно следуют друг за другом: на предыдущий слой материалов наносится следующий слой, стол снова опускается и так повторяется до тех пор, пока на элеваторе (так называют рабочий стол, которым оснащён 3D принтер) не окажется готовая модель.

    Существует несколько технологий 3D печати, которые отличаются друг от друга по типу прототипирующего материала и способам его нанесения. В настоящее время наибольшее распространение получили следующие технологии 3D печати: стереолитография, лазерное спекание порошковых материалов, технология струйного моделирования, послойная печать расплавленной полимерной нитью, технология склеивания порошков, ламинирование листовых материалов и УФ-облучение через фотомаску. Охарактеризуем перечисленные технологии подробнее.

    Стереолитография

    Стереолитография – она же Stereo Lithography Apparatus или сокращённо SLA благодаря низкой себестоимости готовых изделий получила наибольшее распространений среди технологий 3D печати.

    Технология SLA состоит в следующем: сканирующая система направляет на фотополимер лазерный луч, под действием которого материал твердеет. В качестве фотополимера используется хрупкий и твёрдый полупрозрачный материал, который коробится под действием атмосферной влаги. Материал легко склеивается, обрабатывается и окрашивается. Рабочий стол находится в ёмкости с фотополимерной композицией. После прохождения лазерного луча и отверждения очередного слоя его рабочая поверхность смещается вниз на 0,025 мм – 0,3 мм.

    SLA технология

    Оборудование для SLA печати изготавливают компании F& S Stereolithographietechnik GmbH, 3DSystem, а также Институт проблем лазерных и информационных технологий РАН.

    Ниже показаны шахматные фигуры, созданные методом SLA печати.

    Шахматные фигуры, созданные методом SLA печати

    Лазерное спекание порошковых материалов

    Лазерное спекание порошковых материалов – оно же Selective Laser Sintering или просто SLS является единственной технологией 3D печати, которая может быть использована для изготовления металлических формообразующих для металлического и пластмассового литья. Пластмассовые прототипы обладают хорошими механическими свойствами, благодаря которым они моту быть использованы для изготовления полнофункциональных изделий.

    В SLS печати используются материалы, близкие по своим свойствам к конструкционным маркам: металл, керамика, порошковый пластик. Порошковые материалы наносятся на поверхность рабочего стола и запекаются лазерным лучом в твёрдый слой, соответствующий сечению 3D модели и определяющий её геометрию.

    SLS технология

    Оборудование для SLS-печати изготавливают следующие заводы: 3D Systems, F& S Stereolithographietechnik GmbH, The ExOne Company / Prometal, EOS GmbH.

    На рисунке представлена скульптурная модель «Так держать», изготовленная методом SLS печати.

    Скульптурная модель «Так держать», изготовленная методом SLS печати, автор Лука Ионеску

    Послойная печать расплавленной полимерной нитью

    Послойная печать расплавленной полимерной нитью – она же Fused Deposition Modeling или просто FDM применяется для получения единичных изделий, приближенных по своим функциональным возможностям к серийным изделиям, а также для изготовления выплавляемых форм для литья металлов.

    Технология FDM печати заключается в следующем: выдавливающая головка с контролируемой температурой разогревает до полужидкого состояния нити из ABC пластика, воска или поликарбоната, и с высокой точностью подаёт полученный термопластичный моделирующий материал тонкими слоями на рабочую поверхность 3D принтера. Слои наносятся друг на друга, соединяются между собой и отвердевают, постепенно формируя готовое изделие.

    Технология FDM печати

    В настоящее время 3D принтеры с технологией FDM печати изготавливаются компанией Stratasys Inc.

    На картинке изображена модель, напечатанная 3D принтером с технологией FDM печати.

    Модель, напечатанная 3D принтером с технологией FDM печати

    Технология струйного моделирования

    Технология моделирования или Ink Jet Modelling имеет следующие запатентованные подвиды: 3D Systems (Multi-Jet Modeling или MJM), PolyJet (Objet Geometries или PolyJet) и Solidscape (Drop-On-Demand-Jet или DODJet).

    Перечисленные технологии функционируют по одному принципу, но каждая из них имеет свои особенности. Для печати используются поддерживающие и моделирующие материалы. К числу поддерживающих материалов чаще всего относят воск, а к числу моделирующих – широкий спектр материалов, близких по своим свойствам к конструкционным термопластам. Печатающая головка 3D принтера наносит поддерживающий и моделирующий материалы на рабочую поверхность, после чего производится их фотополимеризация и механическое выравнивание.

    Технология струйного моделирования позволяет получить окрашенные и прозрачные модели с различными механическими свойствами, это могут быть как мягкие, резиноподобные изделия, так и твёрдые, похожие на пластики.

    Технология струйного моделирования

    Принтеры для 3D печати с использованием технологии струйного моделирования изготавливают следующие компании: Solidscape Inc, Objet Geometries Ltd, 3D Systems.

    Технология склеивания порошков

    – она же Binding powder by adhesives позволяет не просто создавать объёмные модели, но и раскрашивать их.

    Принтеры с технологией binding powder by adhesives используют два вида материалов: крахмально-целлюлозный порошок, из которого формируется модель, и жидкий клей на водной основе, проклеивающий слои порошка. Клей поступает из печатающей головки 3D принтера, связывая между собой частицы порошка и формируя контур модели. После завершения печати излишки порошка удаляются. Чтобы придать модели дополнительную прочность, её пустоты заливаются жидким воском.

    Технология склеивания порошков

    Условные обозначения:

    1-2 – ролик наносит тонкий слой порошка на рабочую поверхность; 3 – струйная печатающая головка печатает каплями связующей жидкости на слое пороша, локально укрепляя часть сплошного сечения; 4 – процесс 1-3 повторяется для каждого слоя до готовности модели, оставшийся порошок удаляется

    В настоящее время 3D принтеры с технологией склеивания порошков изготавливаются компанией Z Corporation.

    Ламинирование листовых материалов

    Ламинирование листовых материалов – оно же Laminated Object Manufacturing или LOM предполагает изготовление 3D моделей из бумажных листов при помощи ламинирования. Контур очередного слоя будущей модели вырезается лазером, а ненужные обрезки режутся на небольшие квадратики, которые впоследствии удаляются из принтера. Структура готового изделия похожа на древесную, но боится влаги.

    Технология ламинирования листовых материалов

    До недавнего времени 3D принтеры для ламинирования листовых материалов производила компания Helisys Inc, но в настоящее время компания прекратила выпуск такого оборудования.

    Объект, напечатанный на 3D принтере с технологией ламинирования листовых материалов, показан на фото ниже.

    Модель, напечатанная 3D принтером с технологией LOM

    Облучение ультрафиолетом через фотомаску

    Облучение ультрафиолетом через фотомаску – оно же Solid Ground Curing или SGC предполагает создание готовых моделей из слоёв распыляемого на рабочую поверхность фоточувствительного пластика. После нанесения тонкого слоя пластика он через специальную фотомаску с изображением очередного сечения обрабатывается ультрафиолетовыми лучами. Неиспользованный материал удаляется при помощи вакуума, а оставшийся затвердевший материал повторно облучается жёстким ультрафиолетом. Полости готового изделия заполняются расплавленным воском, который служит для поддержки следующих слоёв. Перед нанесением последующего слоя фоточувствительного пластика предыдущий слой механически выравнивается.

    Вконтакте


    Чарльз Халл - отец современной 3D-печати
    3D-печать или «аддитивное производство» – процесс создания цельных трехмерных объектов практически любой геометрической формы на основе цифровой модели. 3D-печать основана на концепции построения объекта последовательно наносимыми слоями, отображающими контуры модели. Фактически, 3D-печать является полной противоположностью таких традиционных методов механического производства и обработки, как фрезеровка или резка, где формирование облика изделия происходит за счет удаления лишнего материала (т.н. «субтрактивное производство»).
    3D-принтерами называют станки с программным управлением, выполняющие построение детали аддитивным способом. Хотя технология 3D-печати появилась еще в 80-х годах прошлого века, широкое коммерческое распространение 3D-принтеры получили только в начале 2010-х. Первый дееспособный 3D-принтер был создан Чарльзом Халлом, одним из основателей корпорации . В начале 21 века произошел значительный рост продаж, что привело к резкому падению стоимости устройств. Согласно данным консалтинговой фирмы Wohlers Associates, в 2012 году объем мирового рынка 3D-принтеров и сопутствующих сервисов достиг $2,2млрд., показав рост на 29% по сравнению с 2011 годом.
    3D-печатные технологии используются для прототипирования и распределенного производства в архитектуре, строительстве, промышленном дизайне, автомобильной, аэрокосмической, военно-промышленной, инженерной и медицинской отраслях, биоинженерии (для создания искусственных тканей), производстве модной одежды и обуви, ювелирных изделий, в образовании, географических информационных системах, пищевой промышленности и многих других сферах. Согласно исследованиям, домашние 3D-принтеры с открытым исходным кодом позволят отыграть капитальные затраты на собственное приобретение за счет экономичности бытового производства предметов.

    Терминология



    Аддитивное производство подразумевает постройку объектов за счет добавления необходимого материала, а не удаления лишнего, как в случае с субтрактивными методами
    Термин «аддитивное производство» подразумевает технологии по созданию объектов за счет нанесения последовательных слоев материала. Модели, изготовленные аддитивным методом, могут применяться на любом производственном этапе – как для изготовления опытных образцов (т.н. быстрое прототипирование), так и в качестве самих готовых изделий (т.н. быстрое производство).
    В производстве, особенно машинной обработке, термин «субтрактивные» подразумевает более традиционные методы и является ретронимом, придуманным в последние годы для разграничения традиционных способов и новых аддитивных методов. Хотя традиционное производство использует по сути «аддитивные» методы на протяжении веков (такие, как склепка, сварка и привинчивание), в них отсутствует трехмерная информационная технологическая составляющая. Машинная же обработка (производство деталей точной формы), как правило, основывается на субтрактивных методах - опиловке, фрезеровании, сверлении и шлифовании.
    Термин «стереолитография» был определен Чарльзом Халлом в патенте от 1984 года, как «система генерирования трехмерных объектов за счет послойного формирования».

    Основные принципы

    3D-печатные модели

    3D-модели создаются методом ручного компьютерного графического дизайна или за счет . Ручное моделирование, или подготовка геометрических данных для создания трехмерной компьютерной графики, несколько напоминает скульптуру. 3D-сканирование – это автоматический сбор и анализ данных реального объекта, а именно формы, цвета и других характеристик, с последующим преобразованием в цифровую трехмерную модель.
    И ручное и автоматическое создание 3D-печатных моделей может вызвать трудности у среднего пользователя. В связи с этим в последние годы получили распространение 3D-печатные торговые площадки. Среди наиболее популярных примеров такие сервисы, как Shapeways , Thingiverse и Threeding .
    3D-печать



    В качестве чертежей для 3D-печатных объектов используются такие цифровые модели
    Во время печати принтер считывает 3D-печатный файл (как правило, в формате STL), содержащий данные трехмерной модели, и наносит последовательные слои жидкого, порошкообразного, бумажного или листового материала, выстраивая трехмерную модель из серии поперечных сечений. Эти слои, соответствующие виртуальным поперечным сечениям в CAD-модели, соединяются или сплавляются вместе для создания объекта заданной формы. Основным преимуществом данного метода является возможность создания геометрических форм практически неограниченной сложности.
    «Разрешение» принтера подразумевает толщину наносимых слоев (ось Z) и точность позиционирования печатной головки в горизонтальной плоскости (по осям X и Y). Разрешение измеряется в DPI (количество точек на дюйм) или микрометрах (устаревшим термином является «микрон»). Типичная толщина слоя составляет 100мкм (250 DPI), хотя некоторые устройства вроде и способны печатать слоями толщиной от 16мкм (1 600 DPI). Разрешение по осям X и Y схоже с показателями обычных двухмерных лазерных принтеров. Типичный размер частиц составляет около 50-100мкм (от 510 до 250 DPI) в диаметре.


    Один из методов получения цифровой модели - трехмерное сканирование. На иллюстрации 3D-сканер MakerBot Digitizer
    Построение модели с использованием современных технологий занимает от нескольких часов до нескольких дней в зависимости от используемого метода, а также размера и сложности модели. Промышленные аддитивные системы могут, как правило, сократить время до нескольких часов, но все зависит от типа установки, а также размера и количества одновременно изготавливаемых моделей.
    Традиционные производственные методы вроде литья под давлением могут обходиться дешевле при производстве крупных партий полимерных изделий, но аддитивные технологии обладают преимуществами при мелкосерийном производстве, позволяя достигнуть более высокого темпа производства и гибкости дизайна, наряду с повышенной экономичностью в пересчете на единицу произведенного товара. Кроме того, настольные 3D-принтеры позволяют дизайнерам и разработчикам создавать концептуальные модели и прототипы, не выходя из офиса.
    Обработка


    Схема работы 3D-принтеров типа FDM
    Хотя разрешение принтеров вполне достаточно для большинства проектов, печать объектов со слегка превышенными измерениями и последующей субтрактивной механической обработкой высокоточными инструментами позволяет создавать модели повышенной точности.
    Примерами устройств с подобным комбинированным методом изготовления и обработки служит . Некоторые методы аддитивного производства предусматривают возможность использования нескольких материалов, а также разных цветов в течение одного производственного цикла. Многие из 3D-принтеров используют «поддержки» или «опоры» во время печати. Опоры необходимы для построения фрагментов модели, не соприкасающихся с нижележащими слоями или рабочей платформой. Сами опоры не являются частью заданной модели, и по завершении печати либо отламываются (в случае использования того же материала, что и для печати самой модели), либо растворяются (как правило, в воде или ацетоне – в зависимости от материала, используемого для создания опор).

    Технологии печати

    С конца 1970-х на свет появилось несколько методов 3D-печати. Первые принтеры отличались крупными габаритами, высокой стоимостью и весьма ограниченными возможностями.


    Готовая модель черепа с еще не удаленными опорами

    В настоящее время доступен широкий аддитивного производства. Основные различия заключаются в методе нанесения слоев и используемых расходных материалах. Некоторые методы основываются на плавке или размягчении материалов для создания слоев: сюда входит выборочное лазерное спекание (SLS), выборочная лазерная плавка (SLM), прямое лазерное спекание металлов (DMLS), печать методом послойного наплавления (FDM или FFF). Другим направлением стало производство твердых моделей за счет полимеризации жидких материалов, известное как стереолитография (SLA).
    В случае с ламинированием листовых материалов (LOM), тонкие слои материала подвергаются резке до необходимого контура, с последующим соединением в единое целое. В качестве материалов для LOM могут использоваться бумага, полимеры и металлы. Каждый из перечисленных методов имеет свои преимущества и недостатки, в связи с чем некоторые компании предлагают выбор расходного материала для построения модели – полимера или порошка. Принтеры, работающие по технологии LOM, зачастую используют обычную офисную бумагу для постройки прочных прототипов. Ключевыми моментами при выборе подходящего устройства являются скорость печати, цена 3D-принтера, себестоимость печатаемых прототипов, а также стоимость и ассортимент совместимых расходных материалов.

    Принтеры, изготавливающие полноценные металлические модели, имеют достаточно высокую стоимость, однако возможно использование менее дорогих устройств для производства литейных форм с последующей отливкой металлических деталей.
    Основные методы аддитивного производства представлены в таблице:

    Метод Технология Используемые материалы
    Экструзионный Моделирование методом послойного наплавления (FDM или FFF) Термопластики (такие как полилактид (PLA), акрилонитрилбутадиенстирол (ABS) и др.)
    Проволочный Производство произвольных форм электронно-лучевой плавкой (EBFȝ)
    Порошковый Прямое лазерное спекание металлов (DMLS) Практически любые металлические сплавы
    Титановые сплавы
    Титановые сплавы, кобальт-хромовые сплавы, нержавеющая сталь, алюминий
    Выборочное тепловое спекание (SHS) Порошковые термопластики
    Выборочное лазерное спекание (SLS) Термопластики, металлические порошки, керамические порошки
    Струйный Струйная трехмерная печать(3DP) Гипс, пластики, металлические порошки, песчаные смеси
    Ламинирование Изготовление объектов методом ламинирования (LOM) Бумага, металлическая фольга, пластиковая пленка
    Полимеризация Стереолитография (SLA) Фотополимеры
    Цифровая светодиодная проекция (DLP) Фотополимеры
    Экструзионная печать

    Моделирование методом послойного наплавления (FDM/FFF) было разработано С. Скоттом Трампом в конце 1980-х и получило коммерческое распространение в 1990 силами компании , в числе основателей которой числится сам Трамп. В связи с истечением срока действия патента существует большое сообщество разработчиков 3D-принтеров с открытым исходным кодом, а также коммерческих организаций, использующих данную технологию. Как следствие, стоимость устройств уменьшилась на два порядка со времени изобретения технологии.

    3D-принтеры варьируются от простейших самодельных устройств для печати пластиком...
    Процесс печати методом послойного наплавления подразумевает создание слоев за счет экструзии быстрозастывающего материала в виде микрокапель или тонких струй. Как правило, расходный материал (например, термопластик) поставляется в виде катушек, с которых материал скармливается в печатную головку, называемую «экструдером». Экструдер нагревает материал до температуры плавления с последующим выдавливанием расплавленной массы через сопло. Сам экструдер приводится в движение пошаговыми двигателями или сервомоторами, обеспечивающими позиционирование печатной головки в трех плоскостях. Перемещение экструдера контролируется производственным программным обеспечением (CAM), привязанным к микроконтроллеру.
    В качестве используются всевозможные полимеры, включая акрилонитрилбутадиенстирол (ABS), поликарбонат (), полилактид (PLA), полиэтилен высокого давления (HDPE), смеси поликарбоната и ABS-пластика, полифениленсульфон (PPSU) и др. Как правило, полимер поставляется в форме наполнителя, изготовленного из чистого пластика. В сообществе энтузиастов 3D-печати существует несколько проектов, направленных в материалы для 3D-печати. Проекты основаны на выработке расходных материалов с помощью шредеров и переплавляющих устройств.

    Технология FDM/FFF имеет определенные ограничения по сложности создаваемых геометрических форм. Например, создание навесных конструкций (таких, как сталактиты) невозможно само по себе, ввиду отсутствия необходимой поддержки. Это ограничение компенсируется созданием временных опорных конструкций, удаляемых по завершении печати.
    Порошковая печать

    Одним из методов аддитивного производства является . Слои модели вычерчиваются (спекаются) в тонком слое порошкообразного материала, после чего рабочая платформа опускается, и наносится новый слой порошка. Процесс повторяется до получения цельной модели. Неизрасходованный материал остается в рабочей камере и служит для поддержки нависающих слоев, не требуя создания специальных опор.

    Наиболее распространенными являются методы, основанные на спекании с помощью лазеров: выборочное лазерное спекание (SLS) для работы с металлами и полимерами (например, полиамидом (PA), полиамидом, армированным стекловолокном (PA-GF), стекловолокном (GF), полиэфирэфиркетоном (PEEK), полистиролом (PS), алюмидом, полиамидом, армированным углеволокном (Carbonmide), эластомерами) и прямое лазерное спекание металлов (DMLS) .
    ... до дорогих промышленных установок, работающих с металлами
    Метод выборочного лазерного спекания (SLS) был разработан и запатентован Карлом Декардом и Джозефом Биманом из Техасского университета в Остине в середине 1080-х под эгидой Агентства по перспективным оборонным научно-исследовательским разработкам США (DARPA). Схожий метод был запатентован Р. Ф. Хаусхолдером в 1979 году, но не получил коммерческого распространения.

    Выборочная лазерная плавка (SLM) отличается тем, что не спекает, а фактически расплавляет порошок с местах соприкосновения с мощным лазерным лучом, позволяя создавать материалы высокой плотности, аналогичные в плане механических характеристик изделиям, изготовленным традиционными методами.

    Электронно-лучевая плавка (EBM) является схожим методом аддитивного производства металлических деталей (например, из титановых сплавов), но с использованием электронных пучков вместо лазеров. EBM основывается на плавке металлических порошков слой за слоем в вакуумной камере. В отличие от спекания при температурах ниже порогов плавления, модели, изготовленные электронно-лучевой плавкой отличаются монолитностью с соответствующей высокой прочностью.

    Наконец, существует метод струйной 3D-печати. В данном случае на тонкие слои порошка (гипса или пластика) наносится связующий материал в соответствии с контурами последовательных слоев цифровой модели. Процесс повторяется до получения готовой модели. Технология обеспечивает широкий диапазон применения, включая создание цветных моделей, навесных конструкций, использование эластомеров. Конструкция моделей может быть усилена за счет последующей пропитки воском или полимерами.

    Ламинирование



    3D-принтеры, работающие по технологии FDM, наиболее популярны среди любителей и энтузиастов
    Некоторые принтеры используют в качестве материала для построения моделей бумагу, тем самым снижая стоимость печати. Подобные устройства пережили пик популярности в 1990-х. Технология заключается в выкраивании слоев модели из бумаги с помощью углекислотного лазера с одновременным ламинированием контуров для формирования готового изделия.

    В 2005 году компания разработала вариант технологии, использующий обычную офисную бумагу, лезвие из карбида вольфрама вместо лазера и выборочное нанесение клея.

    Также существуют варианты устройств, осуществляющие ламинирование тонкими металлическими и пластиковыми листами.

    Фотополимеризация


    3D-печать позволяет создавать функциональные монолитные детали сложной геометрической формы, как эта форсунка для реактивного двигателя
    Технология стереолитографии была запатентована Чарльзом Халлом в 1986 году. Фотополимеризация в основном используется в стереолитографии (SLA) для создания твердых объектов из жидких материалов. Этот метод значительно отличается от предыдущих попыток, начиная со скульптурных портретов Франсуа Виллема (1830-1905) и заканчивая фотополимеризацией по методу Мацубары (1974).

    Метод цифровой проекции (DLP) использует жидкие фотополимерные смолы, затвердевающие под воздействием ультрафиолетового света, излучаемого цифровыми проекторами в рабочей камере с защитным покрытием. После затвердевания материала рабочая платформа погружается на глубину, равную толщине одного слоя, и жидкий полимер вновь облучается. Процедура повторяется до завершения постройки модели. Примером системы быстрого прототипирования с использованием цифровых светодиодных проекторов служит .

    Струйные принтеры (например, Objet PolyJet) распыляют тонкие слои (16-30мкм) фотополимера на рабочую платформу до получения цельной модели. Каждый слой облучается ультрафиолетовым пучком до затвердевания. В результате получается модель, готовая к немедленному использованию. Гелеобразный опорный материал, используемый для поддержки компонентов геометрически-сложных моделей, удаляется после изготовления модели вручную и промывкой. Технология допускает использование эластомеров.

    Сверхточная детализация моделей может быть достигнута с помощью многофотонной полимеризации. Данный метод сводится к вычерчиванию контуров трехмерного объекта фокусированным лазерным пучком. Благодаря нелинейному фотовозбуждению материал застывает только в точках фокусирования лазерного пучка. Данный метод позволяет с легкостью добиваться разрешений свыше 100мкм, а также выстраивать сложные структуры с движущимися и взаимодействующими частями.

    Еще одним популярным методом является полимеризация с помощью светодиодных проекторов или «проекционная стереолитография».

    Проекционная стереолитография

    Данный метод подразумевает разделение цифровой трехмерной модели на горизонтальные слои с преобразованием каждого слоя в двухмерную проекцию, аналогичную фотошаблонам. Двухмерные изображения проецируются на последовательные слои фотополимерной смолы, затвердевающие в соответствии с проецируемыми контурами.

    В некоторых системах проекторы расположены снизу, способствуя выравниванию поверхности фотополимерного материала при вертикальном движении модели (в данном случае рабочая платформа с нанесенными слоями передвигается вверх, а не погружается в материал) и сокращению производственного цикла до минут вместо часов.

    Технология позволяет создавать модели со слоями из нескольких материалов с разной скоростью застывания.

    Некоторые коммерческие модели, например Objet Connex, наносят смолу с помощью небольших сопел.

    3D-принтеры

    Промышленные установки

    Промышленное внедрение аддитивного производства идет высокими темпами. К примеру, совместная американо-израильская компания Stratasys поставляет установки для аддитивного производства стоимостью от $2 000 до $500 000, а компания General Electric использует устройства высокого класса для производства
    Бытовые устройства



    Технология LOM поднимает папье-маше на качественно новый уровень Разработка 3D-принтеров для бытового использования ведется нарастающим числом компаний и энтузиастов. Большая часть работы выполняется силами любителей для собственных и общественных нужд, с помощью со стороны академического сообщества и хакеров.

    Старейшим и наиболее долгоживущим проектом в категории настольных 3D-принтеров является RepRap. Проект RepRap направлен на создание 3D-принтеров с бесплатным открытым исходным кодом (FOSH), предоставляемым по универсальной общественной лицензии GNU. Устройства RepRap способны печатать пластиковые компоненты из состава собственной конструкции, которые могут быть использованы для постройки клонов оригинального устройства. Отдельные устройства RepRap успешно применяются для производства печатных плат и металлических частей.

    В связи с открытым доступом к чертежам принтеров RepRap, многие из проектов перенимают технические решения аналогов, создавая, таким образом, подобие экосистемы, состоящей по большей части из свободно модифицируемых устройств. Широкая доступность дизайнов с открытым кодом только способствует возникновению вариантов. С другой стороны, наблюдается существенный разброс в уровне качества и сложности как самих дизайнов, так и изготовляемых на их основе устройств. Быстрое развитие 3D-принтеров с открытым исходным кодом ведет к росту популярности и образованию общественных и коммерческих порталов (таких, как Thingiverse или Cubify), предлагающих различные 3D-дизайны, пригодные для печати. Кроме того, развитие технологии способствует устойчивому развитию местных экономик благодаря возможности использования локально-доступных материалов для производства принтеров.


    Стереолитографические 3D-принтеры зачастую используются в стоматологическом протезировании

    Стоимость 3D-принтеров сокращается значительными темпами, начиная с примерно 2010 года: устройства, стоившие на тот момент $20 000, ныне обходятся в $1 000 или меньше. Многие компании и индивидуальные разработчики уже предлагают бюджетные комплекты для сборки RepRap стоимостью менее $500. Открытый проект привел к разработке принтеров общего назначения, способных печатать всем, что может быть выдавлено через сопло – от шоколада до силиконовой замазки и химических реагентов.
    Принтеры, выполненные на основе этого дизайна доступны в виде сборочных комплектов с 2012 года по цене около $2 000. Некоторые 3D-принтеры, включая и , изначально рассчитаны на максимальную ценовую доступность – так, устройство рассчитано на стоимость порядка $100.
    Профессиональные принтеры, разработанные за счет общественного финансирования на площадке Kickstarter , зачастую показывают прекрасные результаты: устройства отличаются бесшумной работой и отсутствием вредных испарений при цене в $1 499. «3D-печатающая ручка» собрала $2,3млн. в пожертвованиях на Kickstarter, с отпускной ценой самого устройства в $99. Правда, полноценным 3D-принтером 3D Doodler назвать сложно.

    3D Systems Cube - популярный бытовой 3D-принтер

    По мере падения стоимости, 3D-принтеры становятся все более привлекательными для бытового производства. Кроме того, бытовое применение технологий 3D-печати может снизить экологический урон, наносимый промышленностью, за счет снижения объемов расходуемых материалов и затрат энергии и топлива на перевозку материалов и товаров.

    Параллельно созданию домашних 3D-печатных устройств идет разработка приспособлений для переработки домашних отходов в печатные материалы, т.н. . Например, коммерческая модель Filastrucer была спроектирована для переработки пластиковых отходов (бутылок из-под шампуня, молочных контейнеров) в недорогой расходный материал для RepRap принтеров. Подобные методы бытовой утилизации не только практичны, но и оказывают положительное влияние на экологическую обстановку.

    Разработка и кастомизация 3D-принтеров RepRap привела к появлению новой категории полупрофессиональных принтеров для малого бизнеса. Такие производители, как , и предлагают комплекты по цене ниже $1 000. Точность печати подобных устройств находится между промышленными и бытовыми принтерами. В последнее время набирают популярность принтеры повышенной производительности, использующие дельтаобразную систему координат, или так называемые « ». Некоторые компании предлагают программное обеспечение для поддержки принтеров, произведенных другими компаниями.

    Применение


    Использование светодиодных проекторов помогает снизить стоимость стереолитографических принтеров. На иллюстрации DLP принтер Nova

    Трехмерная печать позволяет уравнять стоимость производства одной детали и массового производства, что представляет угрозу для масштабных экономик. Влияние 3D-печати может оказаться подобным внедрению мануфактуры. В 1450-х никто не мог предсказать последствия внедрения печатного станка, в 1750-х никто не воспринимал всерьез появление парового двигателя, а транзисторы 1950-х казались любопытным новшеством. Но технология продолжает развитие и, вероятнее всего, окажет влияние на каждую научную и производственную отрасль, с которой она соприкоснется.

    Наиболее ранним применением аддитивного производства можно считать быстрое прототипирование, нацеленное на сокращение времени разработки новых частей и устройств по сравнению с более ранними субтрактивными методами (слишком медленными и дорогими). Совершенствование технологий аддитивного производства приводит к их распространению в самых разных областях науки и промышленности. Производство деталей, ранее доступных только за счет машинной обработки, теперь возможно за счет аддитивных методов, причем по более выгодной цене.
    Области применения включают макетирование, прототипирование, литье, архитектуру, образование, картографию, здравоохранение, розничную торговлю и др.
    Промышленное применение:
    Быстрое прототипирование: Промышленные 3D-принтеры используются для быстрого прототипирования и исследований с начала 1980-х. Как правило, это достаточно крупногабаритные установки, использующие порошковые металлы, песчаные смеси, пластики и бумагу. Подобные устройства зачастую применяются университетами и коммерческими компаниями.

    Достижения в области быстрого прототипирования привели к созданию материалов, пригодных для производства конечных изделий, что в свою очередь способствовало развитию 3D-производства готовых изделий, как альтернативы традиционным методам. Одним из преимуществ быстрого производства является относительно невысокая стоимость изготовления мелких партий.

    Быстрое производство: быстрое производство остается достаточно новым методом, чьи возможности пока еще не полностью исследованы. Тем не менее, многие эксперты склонны считать быстрое производство технологией качественно нового уровня. Одними из наиболее многообещающих направлений быстрого прототипирования для адаптации в быстрое производство являются выборочное лазерное спекание (SLS) и прямое спекание металлов (DMLS).
    Массовая кастомизация: некоторые компании предлагают услуги по пользовательской кастомизации объектов с помощью упрощенного программного обеспечения с последующим созданием уникальных 3D-моделей на заказ. Одним из наиболее популярных направлений стало изготовление корпусов сотовых телефонов. В частности, компания Nokia выложила в открытый доступ дизайны корпусов своих телефонов для пользовательской кастомизации и 3D-печати.
    Массовое производство: текущая низкая скорость печати 3D-принтеров ограничивает их использование в массовом производстве. Для борьбы с этим недостатком некоторые FDM устройства оснащаются несколькими экструдерами, позволяющими печатать разными цветами, разными полимерами и даже создавать несколько моделей одновременно. В целом, такой подход повышает производительность, не требуя при этом использования нескольких принтеров – для работы нескольких печатных головок хватает одного микроконтроллера.

    Устройства с несколькими экструдерами позволяют создавать несколько идентичных объектов лишь по одной цифровой модели, но в то же время допускают использование разных материалов и цветов. Скорость печати возрастает пропорционально количеству печатающих головок. Кроме того, достигается определенная экономия электроэнергии за счет использования общей рабочей камеры, зачастую требующей подогрева. Вместе, эти два момента снижают себестоимость процесса.

    Многие из принтеров оснащаются двойными печатными головками, однако данная конфигурация используется только для печати одиночных моделей разными цветами и материалами.

    Бытовое и любительское применение

    На сегодняшний день бытовая 3D-печать в основном привлекает внимание энтузиастов и любителей, в то время как практическое применение достаточно ограничено. Тем не менее, 3D-принтеры уже использовались для печати работающих механических часов, шестеренок для деревообрабатывающих станков, украшений и пр. Вебсайты, связанные с домашней 3D-печатью, зачастую предлагают дизайны крючков, дверных ручек, массажных инструментов и т.д.

    Применяется 3D-печать и в любительской ветеринарии и зоологии – в 2013 году 3D-печатный протез позволил поднять на ноги утенка, а стильные 3D-печатные раковины приходятся по душе ракам-отшельникам. 3D-принтеры достаточно широко применяются для бытового производства бижутерии – ожерелий, колец, сумочек и пр.

    Открытый проект Fab@Home направлен на разработку бытовых принтеров общего назначения. Устройства испытывались в исследовательских условиях на предмет использования новейших 3D-печатных технологий для производства химических соединений. Принтер может печатать любым материалом, пригодным для экструзии из шприца в виде жидкости или пасты. Разработка направлена на возможность домашнего производства лекарств и бытовой химии в удаленных районах проживания.

    Студенческий проект OpenReflex привел к созданию дизайна аналогового зеркального фотоаппарата, пригодного для 3D-печатного производства.

    Одежда

    3D- печать получает распространение – кутюрье используют принтеры для экспериментов по созданию купальников, обуви и платьев. Коммерческое применение включает быстрое прототипирование и 3D-печатное производство профессиональной спортивной обуви - Vapor Laser Talon для футболистов и New Balance для легкоатлетов.

    3D-биопечать




    Медицинские имплантаты из титана, созданные с помощью технологии EBM

    В настоящее время ведутся исследования в области 3D-печати силами биотехнологических компаний и академических учреждений. Исследования направлены на изучение возможности применения струйной/капельной 3D-печати в тканевой инженерии для создания искусственных органов. Технология основывается на нанесении слоев живых клеток на гелевый субстрат или сахарный матрикс, с постепенным послойным наращиванием для создания трехмерных структур, включая сосудистые системы. Первая производственная система для 3D-печати тканей, основанная на биопечатной технологии NovoGen, была представлена в 2009 году. Для описания этой исследовательской области используется целый ряд терминов: печать органов, биопечать, компьютерная тканевая инженерия и др.

    Один из пионеров 3D-печати, исследовательская компания , проводит лабораторные исследования и развивает производство функциональных трехмерных образцов человеческих тканей для использования в медицинских и терапевтических исследованиях. Для биопечати компания использует 3D-принтер NovoGen MMX. Organovo считает, что биопечать позволит ускорить тестирование новых медицинских препаратов перед клиническими испытаниями, что позволит экономить время и средства, вкладываемые в разработку лекарств. В долгосрочной перспективе Organovo надеется адаптировать технологию биопечати для создания трансплантатов и применения в хирургии.

    3D-печать имплантатов и медицинских аппаратов

    3D-печать используется для создания имплантатов и устройств, применяемых в медицине. Успешные операции включают такие примеры, как вживление , а также . Наиболее широкое применение 3D-печати ожидается в производстве слуховых аппаратов и стоматологии. В марте 2014 года хирурги из Суонси использовали 3D-печать для реконструкции лица мотоциклиста, получившего серьезные травмы в дорожной аварии.

    3D-печатные сервисы

    Некоторые компании предлагают услуги по 3D-печати онлайн, доступные для индивидуальных заказчиков и промышленных компаний. От заказчика требуется подгрузка 3D-дизайна на сайт, после чего модель печатается с помощью промышленных установок. Готовое изделие либо доставляется заказчику, либо подлежит самовывозу.

    Исследование новых применений




    3D-печать позволяет создавать полностью функциональные металлические изделия, вплоть до оружия.
    Будущее применение 3D-печати может включать создание научного оборудования с открытым исходным кодом для использования в открытых лабораториях и другого научного применения – реконструкции окаменелостей в палеонтологии, создания дубликатов бесценных археологических артефактов, реконструкции костей и частей тел для судебно-медицинской экспертизы, реконструкции сильно поврежденных улик, собранных с мест преступлений. Технология также рассматривается для применения в строительстве.

    В 2005 году академические журналы начали публиковать материалы по возможности применения технологий 3D-печати в искусстве. В 2007 году Wall Street Journal и журнал Time включили 3D-дизайн в список 100 самых значительных достижений года. В Музее Виктории и Альберта на Лондонском дизайнерском фестивале в 2011 году была представлена экспозиция Мюррэя Мосса под названием «Индустриальная революция 2.0: как материальный мир материализуется заново», посвященная технологиям 3D-печати.

    В 2012 году экспериментальный проект Университета Глазго показал, что 3D-печать может быть использована для производства химических соединений, включая доселе неизвестные. В ходе проекта были напечатаны сосуды для хранения химических реагентов, в которые с помощью аддитивных установок впрыскивались «химические чернила» с последующей реакцией. Состоятельность технологии была доказана производством новых соединений, но конкретное практическое применение в ходе эксперимента не преследовалось. Лаборатория Cornell Creative Machines подтвердила возможность создания с помощью гидроколлоидной 3D-печати. Профессор Лерой Кронин из Университета Глазго предложил использовать «химические чернила» для печати медицинских препаратов.

    Использование технологий 3D-сканирования позволяет создавать реплики настоящих объектов без использования литейных методов, требующих высоких затрат, сложных в исполнении и способных оказывать разрушающее воздействие в случаях с драгоценными и хрупкими объектами культурного наследия.

    Дополнительным примером разрабатываемых технологий трехмерной печати служит применение аддитивного производства в строительстве. Это могло бы позволить ускорить темпы строительства с одновременным снижением стоимости. В частности, рассматривается возможность использования технологии для постройки космических колоний. Например, проект Sinterhab направлен на исследование возможности аддитивного производства лунных баз с использованием лунного реголита в качестве основного строительного материала. Вместо использования связующих материалов, рассматривается возможность микроволнового спекания реголита в цельные строительные блоки.

    Аддитивное производство позволяет создавать волноводы, муфты и изгибы в терагерцевых устройствах. Высокая геометрическая сложность подобных изделий не могла быть достигнута традиционными производственными методами. Коммерчески доступная профессиональная установка была использована для создания структур с разрешением в 100 микрон. Напечатанные структуры были гальванизированы золотом для создания терагерцевого плазмонного аппарата.

    Китай выделил почти $500млн. на развитие 10 национальных институтов по разработке технологий 3D-печати. В 2013 году китайские ученые приступили к печати живых хрящевых, печеночных и почечных тканей с помощью специализированных 3D-биопечатных принтеров. Исследователи из Университета Ханчжоу Дианци даже разработали для этой сложной задачи собственный 3D-биопринтер, получивший название Regenovo. Один из разработчиков Regenovo, Сюй Минген, заявил, что принтеру требуется менее часа для производства небольшого образца печеночной ткани или четырех-пяти дюймового образца ушного хряща. Сюй предрекает появление первых полноценных печатных искусственных органов в течение следующих 10-20 лет. В том же году исследователи из бельгийского Университета Хасселта успешно для 83-летней женщины. После вживления имплантата пациент может нормально жевать, разговаривать и дышать.

    В Бахрейне 3D-печать материалами, напоминающими песчаник, позволила создать уникальные структуры для поддержки роста кораллов и восстановления поврежденных рифов. Данные структуры имеют более натуральную форму, чем конструкции, использовавшиеся ранее, и не обладают кислотностью бетона.

    Интеллектуальная собственность


    Срез печеночной ткани, напечатанной специалистами компании Organovo, работающей над совершенствованием технологий 3D-печати для производства искусственных органов
    3D-печать существует на протяжении десятилетий, и многие аспекты технологий попадают под патенты, авторские права и защиту торговых марок. Однако, с точки зрения юриспруденции не совсем ясно, как законы о защите интеллектуальной собственности будут применяться на практике, если 3D-принтеры получат широкое
    распространение и будут применяться в бытовом производстве товаров для личных нужд, некоммерческого использования или для продажи.

    Любые из защитных мер могут негативно повлиять на распространение дизайнов, используемых в 3D-печати или реализацию напечатанных изделий. Для использования защищенных технологий может потребоваться разрешение владельца, что в свою очередь потребует уплаты роялти.

    Патенты распространяются на некоторые процессы, устройства и материалы. Срок действия патентов варьируется в разных странах.

    Зачастую авторские права распространяются на выражение идей в виде материальных объектов и длятся на протяжении жизни автора, плюс 70 лет. Таким образом, если кто-то создаст статую и получит авторские права, распространение дизайнов для печати идентичной или подобной статуи будет незаконным.

    Влияние 3D-печати

    Аддитивное производство требует от производственных компаний гибкости и постоянного совершенствования доступных технологий для поддержания конкурентоспособности. Защитники аддитивного производства предрекают нарастание противостояния 3D-печати и глобализации по мере того, как домашнее производство будет вытеснять торговлю товарами между потребителями и крупными производителями. В реальности, интеграция аддитивных технологий в коммерческое производство служит как дополнение традиционных субтрактивных методов, а не полная замена последних.

    Космические исследования

    В 2010 году начались работы по применению 3D-печати в условиях невесомости и низкой гравитации. Основной целью является создание ручных инструментов и более сложных устройств «по мере необходимости» вместо использования ценного грузового объема и топлива для доставки готовых изделий на орбиту.

    3D-печатью заинтересовалась даже NASA
    В то же время, NASA проводит совместные тесты с компанией Made in Space, направленные на оценку потенциала 3D-печати в снижении стоимости и повышении эффективности космических исследований. Детали ракет, изготовленные NASA с помощью аддитивных технологий, в июле 2013 года: две топливные форсунки показали результаты на уровне деталей, производимых традиционными методами, во время рабочих тестов, подвергших детали температурам около 3 300°С и высоким уровням давления. Примечательно, что NASA готовится : агентство собирается продемонстрировать возможность создания запасных частей прямо на орбите, вместо дорогостоящей транспортировки с земли.

    Социальные перемены

    Тема социальных и культурных перемен, как результата внедрения коммерчески доступных аддитивных технологий, обсуждается писателями и социологами с 1950-х. Одним из наиболее интересных предположений стало возможное стирание границ между бытом и рабочими местами в результате массового внедрения 3D-принтеров в домашние условия. Также указывается легкость передачи цифровых дизайнов, что в комбинации с локальным производством будет способствовать снижению необходимости в глобальных транспортных перевозках. И наконец, защита авторских прав может претерпеть изменения с учетом легкости аддитивного производства многих товаров.

    Огнестрельное оружие

    В 2012 году американская компания Defense Distributed опубликовала планы по созданию «дизайна функционального пластикового оружия, доступного для скачивания и воспроизведения любым пользователем с доступом к 3D-принтеру». Defense Distributed разработала 3D-печатную версию ствольной коробки для винтовки AR-15, способную выдерживать более 650 выстрелов, и магазина на 30 патронов для винтовки M-16. AR-15 имеет две ствольные коробки (нижнюю и верхнюю), но легальный учет привязан к нижней коробке, имеющей штамп с серийным номером. Вскоре после того, как Defense Distributed создала первые рабочие чертежи для производства пластикового оружия в мае 2013 года, Государственный департамент США потребовал удаления инструкций с сайта компании.

    Распространение чертежей компанией Defense Distributed подогрело дискуссию о возможном влиянии 3D-печати и цифровых обрабатывающих устройств на эффективность контроля незаконного оборота оружия. Однако борьба с распространением цифровых оружейных моделей неминуемо столкнется с теми же проблемами что и попытки предотвращения торговли пиратским контентом.

    Существует миф о том, что Дмитрий Иванович Менделеев увидел свою периодическую таблицу химических элементов во сне.
    Чак Халл, человек, который изобрел 3D печать, тоже увидел свое будущее детище во сне. Конечно, такой принтер не является источником вечной молодости, но медики уже придумали принтеру универсальное применение на службе обществу. 3D принтеры помогают врачам распечатывать кости, зубы, опухоли, а порой и целые органы.

    С момент изобретения этой технологии прошло более 30 лет. С каждым поколением принтеров менялись принципы затвердевания полимера, менялось качество печати. Первым объектом, который был напечатан самим Чаком Халлом, стала самая простая кружка, на ее создание было потрачено несколько месяцев. Сейчас красивые и оригинальные вещи модно напечатать буквально за несколько часов.

    Собрав свой первый 3D принтер и основав компанию 3D Systems, Чак Халл не просто создал новый объект, а стал создателем целой абсолютно новой отрасли технологий – «аддитивные технологии». Суть аддитивности заключается в том, что объект не создается из монолитного куска путем отсечения лишних фрагментов, а создается «с нуля» путем добавления кусочков свежего исходного материала.

    Так как вариантов применения таких принтеров огромное количество, то и внешне они могут вовсе не походить на своих «офисных» собратьев. С помощью 3D печати сейчас печатают абсолютно все: от домов до тортов.

    Нынешний показатель объема мирового рынка этой группы товаров составляет $3 млрд, по прогнозам к 2020 году эта цифра должна будет вырасти в четыре(!) раза.

    Несмотря на то, что эта технология еще не находится на пике своей популярности, мировой производитель авиадвигателей Rolls-Royce вовсю печатает лопасти турбин для двигателей, доверяя новейшим технологиям жизни людей и свое имя.

    Чем же привлекает инженеров и конструкторов по всему миру новая технология? В первую очередь, высокой производительностью и простотой. Достаточно иметь 3D-модель и уже можно рассчитывать получить готовый экземпляр выходного продукта. Во-вторых, особо привлекательна для производителей низкая себестоимость продукта: не надо тратить лишние деньги на оплату человеко-часов, затраченных на производство, не надо переделывать полностью чертежи и изготавливать новую деталь, если что-то необходимо доработать в прототипе, не надо изготавливать сложные формы в несколько приемов, тратя на это огромное количество исходного материала.

    Где взять деньги для начала собственного бизнеса? Именно с этой проблемой сталкивается 95% начинающих предпринимателей! В статье мы раскрыли самые актуальные способы получения стартового капитала для предпринимателя. Так же рекомендуем внимательно изучить результаты нашего эксперимента в биржевом заработке:

    Кроме того, объемная печать является замечательным и логичным продолжением полностью компьютеризированного современного производства. Абсолютно все: от идеи до реализации, создается при помощи компьютера. Разработка эскиза, создание технической модели, обработка и проецирование готовой модели в компьютерной среде, создание специального файла для принтера… Вмешательство человеческого фактора на всех этапах производства сводиться к минимуму.
    Кстати, Чак Халл придумал и один из форматов файлов, с помощью которого удается интерпретировать команды для 3Dпринтера.

    Кроме того, новая технология позволяет не только создавать модель «с нуля», но и переводить уже существующий объект в электронную среду: здесь роль 3D принтера заменяется 3D-сканером.

    Эта особенность позволяет быстро подгонять свойства предмета под потребности конкретного человека: кастомизация и персонализация при работе с клиентом на самом высшем уровне!

    Конечно, у новой технологии есть и свои недостатки, но они скорее незначительны. Главным образом критики сконцентрированы на низкой скорости печати и высокой зернистости поверхности. Но не стоит забывать о том, что за последние 30 лет уже был совершен прорыв в скорости работы таких принтеров, а в дальнейшем эти показатели будут лишь улучшаться. Уже сейчас разработаны различные варианты принтеров, которые могут печатать одновременно несколькими головками, создавая многоцветные модели, или принтеры, которые используют технологию непрерывной печати – фотополимер застывает настолько быстро, что отпадает потребность в послойной работе головки.

    О качестве обработки поверхности тоже можно размышлять долго – далеко не во всех отраслях требуется идеальная поверхность, для большинства компаний гораздо важнее получить быстро новую деталь, испытать ее, доработать и быстро получить реальный образец. А с этими задачами аддитивные технологии справляются замечательно.

    Чак Халл вспоминает, что 30 лет от громоздких и неторопливых машин до портативных устройств будет пройден так быстро. Так что он уверен в том, что аддитивные технологии смогут развиваться и в дальнейшем.

    Если сейчас основным материалом для печати является широкий спектр полимеров, то в ближайшем будущем это место сможет быть занято сплавами и композитными керамо-материалами.

    Технология 3D-печати начинает уверенно покорять земной шар. Мы все чаще читаем новости о том, как кто-то смог с помощью данной инновации «напечатать» столовую ложку или даже реактивный авиационный двигатель, но пока с трудом представляем, где это можно применить в строительном бизнесе.

    Для информации: технология 3D-печати - это послойное создание материального объекта по его цифровой 3D-модели.

    Сейчас высокотехнологичные принтеры создают уже множество предметов, от кофейной кружки до , поэтому и нам, дабы шагать в ногу со временем, стоит изучить несколько новинок, которые может сотворить 3D-принтер, и которые мы, вполне вероятно, в скором будущем будем использовать в нашей работе.

    Представляю вам несколько строительных и дизайнерских инноваций, о которых стоит знать образованному человеку, вовлеченному в строительное и архитектурное дело.

    Технология Dremel 3D Idea Builder

    не поможет вам построить дом, но поможет его украсить и обустроить. Устройство, созданное американской компанией Home Depot и называемое Dremel, стало хитом продаж 2014 года на западе. Как мифический джинн из бутылки, оно может исполнять многие ваши желания, будь то создание изысканной вазы вашей мечты, плафона для настольной лампы, насадки для пылесоса или детской игрушки.

    К примеру, эту статуэтку 3D-принтер вам напечатает за 3 часа 51 минуту.

    А эту вазу и того меньше – всего за 3 часа.

    Владелец данной технологии, компания Home Depot, продает свое устройство Dremel 3D Idea Builder всего за $ 999. Освоив эту технологию и приобретя мудреный аппарат, вы сможете, не выходя из дома, создать для себя множество полезных предметов, порадовав жену красивой чашкой, а детей – игрушечным зАмком.

    Возведение бюджетного жилья

    Когда в прошлом году малоизвестная китайская компания Winsun сообщила, что создала 3D-принтер, способный печатать для возведения строений, по правде говоря, ей никто не поверил. Но в январе 2015 года она продемонстрировала результат работы своего «детища» прессе, показав построенный с помощью 3D-принтера дом в викторианском стиле общей площадью 1100 м2.

    Дом, якобы напечатанный с помощью 3D-принтера компанией Winsun, показанный на выставке в городе Сучжоу.

    Сам аппарат Winsun никому не показала, сославшись на коммерческую тайну и не оформленные пока должным образом документы на изобретение. Однако были оглашены его габариты - 6,6 м х 10 м х 150 м, принцип работы и предъявлено в качестве доказательства видео, на котором громоздкое устройство действительно печатало бетонные блоки из смеси цемента, стекловолокна, стали и связующего элемента. По утверждению компании-правообладателя, данный дом был построен гораздо быстрее, чем при обычном строительстве, и затраты на его постройку составляли ровно половину от обычной сметы.

    Пока не осмелимся утверждать, что все это истинная правда, ибо само устройство, созданное китайскими умельцами, пока мало кто видел в работе. Однако, это весьма похоже на правду. И если это так, то для многих стран мира проблема быстрого возведения бюджетного жилья могла бы быть решена. Стихийные бедствия, низкий уровень жизни... На самом деле сегодня, в 21 веке, на планете Земля еще очень много людей проживают в трущобах. Дешевое жилье, которое могло бы быть построено за несколько дней, стало бы для них настоящим спасением.

    А пока поговаривают, что правительство Египта уже заключило с компанией Winsun контракт на кругленькую сумму. По нему китайцы обязуются построить 20000 одноэтажных жилых домов для египтян.

    Пока китайцы хранят свою тайну, и, быть может, оформляют патент на уникальную технологию, голландская компания 3DEALISE и строительная компания Bruil не стесняются демонстрировать свою машину, названную S-Max принтером, способную создавать сложные бетонные конструкции размером с телефонную будку.

    Уникальность голландской технологии 3D-печати заключается в том, что создаваемые ею структуры имеют сложные формы, которым бетон обычно не поддается. Ко всему прочему, принтер S-Max с такой же легкостью печатает и металлические конструкции, способен отливать формы в виде огромных пчелиных сот и сеток. Таким образом, голландские изобретатели пошли дальше своих китайских конкурентов, придумав принтер, умеющий печатать сложные архитектурные формы, на которые есть запрос у современного строительства.

    Аппарат S-Max, продемонстрированный компаниями 3DEALISE и Bruil 22 февраля 2015 года на выставке Additive World Conference.