• Что можно приготовить из кальмаров: быстро и вкусно

    Основными технологическими процессами, применяемыми при изготовлении полупроводниковых интегральных микросхем, являются оксидирование, фотолитография, диффузия, эпитаксия, ионное легирование.

    Оксидирование кремния. Этот процесс имеет важное значение в технологии изготовления полупроводниковых интегральных микросхем. Диоксид кремния Si0 2 представляет собой стеклообразный оксид, имеющий тот же химический состав, что и кварцевое стекло. Эти оксиды являются хорошей изоляцией для отдельных элементов схемы, служат маской, препятствующей проникновению примесей при диффузии, применяются для защиты поверхности и создания активных диэлектрических элементов (например, в МОП-транзисторах). Они образуют равномерное сплошное покрытие на поверхности кремния, которое легко стравливается и удаляется с локальных участков. Повторное оксидирование обеспечивает защиту P-N -перехода от воздействия окружающей среды. Коэффициенты термического расширения кремния и диоксида кремния близки. Диоксид кремния обладает хорошей адгезией и сравнительно легко создается на поверхности пластины.

    В зависимости от метода получения различают термические и анодные оксиды.

    Термические оксиды получают при ускоряемых нагревом реакциях кремния с кислородом и другими веществами, содержащими кислород. Такие оксиды имеют толщину ~ 1 мкм и обладают высокой плотностью.

    Метод термического оксидирования имеет две разновидности:

    1) высокотемпературное оксидирование в потоке сухого кислорода и увлажненных газов;

    2) оксидирование в парах воды при высоком давлении (до 50 МПа), при сравнительно невысоких температурах (5ОО...900°С).

    Оксидирование в потоке увлажненных газов выполняется по рис.1.8. Пластины кремния помещают в кварцевую трубу, где установлена температура 1100°С. Один конец трубы соединен с увлажнителем (деионизованной водой), через которую пропускают газ (аргон, азот и др.). При отключенном увлажнителе осушенный кислород поступает непосред-ственно в кварцевую трубу. Оксидирование проводится в такой последовательности: предварительная выдержка в сухом кислороде (~15 мин); длительное оксидирование во влажном кислороде (2 ч) и окончательное оксидирование в сухом кислороде. Первая операция дает прочную пленку малой толщины. Термическая обработка в среде влажного кислорода обеспечивает быстрый рост пленки (до 1 мкм), но плотность ее получается недостаточной. Последующая обработка в сухом кислороде приводит к уплотнению пленки и улучшению ее структуры.

    Наиболее часто используют толщину оксида, составляющую десятые доли микрометра, а верхний предел по толщине равен 1 мкм. Добавление в оксидированную среду хлорсодержащих компонентов повышает скорость оксидирования и увеличивает напряженность пробоя. Главная роль хлора заключается в превращении случайно попавших в диоксид кремния примесных атомов (калия, натрия и др.) в электрически неактивные.


    Окисление кремния в парах воды при высоком давлении осуществляется в камере, внутренняя поверхность которой покрывается золотом или другим инертным металлом во избежание нежелательной реакции. В камеру помещают пластины кремния и определенное количество воды высокой чистоты, которая нагревается до температуры оксидирования (500 ...800°С). Толщина пленки зависит от длительности оксидирования, давления и концентрации паров воды.

    На качество оксидной пленки влияет чистота рабочего объема, в котором производится процесс. Попадание даже ничтожного количества примесных атомов может существенно изменить свойства материала исходной заготовки. Наиболее вредное воздействие оказывают примеси меди, коэффициент диффузии которых в кремнии очень велик.

    Большое значение имеет предокислительная очистка кремния от загрязнений, приводящих к прерывистости в пленках. Преимущество оксидирования при высоком давлении состоит в возможности снижения температуры процесса без увеличения продолжительности.

    Анодное оксидирование кремния имеет две модификации: оксидирование в жидком электролите и в газовой плазме. Процесс анодного оксидирования дает возможность получать оксидные пленки при более низких температурах, что ограничивает пере-распределение примесей в предварительно сформированных диффузионных областях.

    Для создания межслойной изоляции процесс оксидирования не применяют, а диэлектрические слои получают осаждением.

    Пленки диоксида кремния как защитные слои обладают следующими недостатками: 1) пористостью структуры, что приводит к возможности проникновения водяных паров и некоторых примесей к исходной поверхности кремния; 2) способностью атомов ряда элементов мигрировать сквозь пленку диоксида кремния, что приводит к нестабильности характеристик полупроводниковых приборов.

    Фотолитография. Фотолитография представляет собой процесс образования на поверхности диоксида подложки фоторезистивного изображения топологии схемы и последующего переноса его на подложку. По структуре он совпадает с методами, применяемыми при образовании проводников печатных плат. Однако этот процесс имеет свою специфику, обусловленную требованиями высокой разрешающей способности и повышенными требованиями к качеству применяемых материалов и чистоте окружающей среды.

    Фоторезисты - тонкие плёнки органических растворов, которые должны обладать свой-ствами после экспонирования ультрафиолетовым светом полимеризоваться и переходить в нерастворимое состояние. Основные требования, предъявляемые к фоторезистам, - высокая разрешающая способность, светочувствительность, устойчивость к воздействию травителей и различных химических растворов, хорошая адгезия с поверхностью изделия.

    Под разрешающей способностью фоторезиста понимается число линий, которое можно нанести на один миллиметр поверхности платы с расстоянием между ними, равным их ширине. Разрешающая способность зависит от вида фоторезиста и толщины слоя. При тон­ких слоях она больше, чем при толстых.

    По способу образования рисунка фоторезисты делятся на негативные и позитивные (рис. 1.9).

    Участки негативного фоторезиста, находящиеся под прозрачными участками фотошаблона, под действием ультрафиолетового света получают свойство не растворяться при проявлении. Участки фоторезиста, расположенные под непрозрачными местами фотошаблона, легко удаляются при проявлении в растворителе. Таким образом создается; рельеф, представляющий собой изображение светлых элементов фотошаблона (рис. 1.9, а).

    Негативные фоторезисты изготовляют на основе поливинилового спирта. Их широко применяют вследствие отсутствия токсичных составляющих, приемлемой разрешающей способности (до 50 ли-ний/мм), простоте проявления и низкой стоимости. Недостатком является невозможность хранения более 3...5 ч заготовок с нанесенным слоем, так как послед-ний задубливается и в темноте. Кроме того, с пони-жением влажности и температуры окружающей среды уменьшается механическая прочность светочувствительного слоя и его адгезия с поверхностью.

    Позитивный фоторезист под действием облучения изменяет свои свойства таким образом, что при обработке в проявителях растворяются его облученные участки, а необлученные (находящиеся под непрозрачными участками фотошаблона) остаются на поверхности платы (рис. 1.9, б).

    Для позитивных фоторезистов применяют материалы на основе диазосоединений, которые состоят из светочувствительной полимерной основы (новолачной смолы), растворителя и некоторых других компонентов. По адгезионной и разрешающей способности они превосходят негативные фоторезисты, но имеют более высокую стоимость и содержат токсичные растворители. Разрешающая способность позитивных фоторезистов составляет до 350 линий/мм. Достоинством позитивного фоторезиста является отсутствие дубления при хранении заготовок с нанесенным светочувствительным слоем.

    В технологическом процессе производства ИМС применяют жидкие и сухие фоторезисты.

    Жидкие фоторезисты наносят погружением (окунанием), поливом с центрифугированием, накатыванием ребристым роликом и другими способами.

    Сухие фоторезисты, получившие более широкое распространение ввиду большей технологичности и простоте применения, представляют собой тонкую структуру из трёх слоёв: оптически прозрачной плёнки (обычно полиэтилентерефталата), светочув-ствительного полимера и защитной лавсановой плёнки. Нанесение их проводится при повышенной температуре с предварительным удалением защитного слоя и приклеиванием фоторезиста. После экспонирования рисунка снимается оптическая плёнка и изображение проявляется в воде. При этом неэкспонированные участки рисунка удаляются.

    Высокую разрешающую способность рисунка схемы обеспечивают позитивные фоторезисты. Однако их преимущества не исключают возможности использования негативных фоторезистов, обладающих большей кислотоустойчивостью и простотой проявления.

    Основные этапы процесса фотолитографии при реализации контактной печати приведены на рис.1.10.

    Подготовка повер-хности подложки (рис. 1.10,а) существенно влияет на адгезию фоторезиста. Пос-ледний следует наносить сразу же после окисления пластины без каких-либо дополнительных обработок поверхности. Если подложки хранятся более часа, то производится термообработка в сухом кислороде или азоте при t=1000°С в течение нескольких минут. Она позволяет устранить гидрофильность поверхности подложки.

    Нанесение фото-резиста производят цен-трифугированием (рис. 1.10,6). Оптимальная толщина слоя фоторезиста находится в пределах 0,3... 0,8 мкм. При толщине слоя менее 0,2 мкм вероятность появления проколов резко увеличивается, а при толщинах более 1 мкм снижается разрешающая способность процесса, что не дает возможности получать элементы с малыми размерами.

    При нанесении фоторезиста необходимо обеспечить однородность слоя (отсутствие пор, инородных частиц и др.) и равномерность его по толщине. Однородность слоя зависит от чистоты исходного фоторезиста, чистоты окружающей среды, режимов и способа сушки. Равномерность толщины слоя зависит от вязкости фоторезиста и режимов его нанесения. Неравномерность слоя по толщине является причиной ухудшения контраст-ности вследствие неполного прилегания фотошаблона к фотослою при экспонировании.

    Удаление растворителя из слоя фоторезиста для образования прочной и однородной пленки осуществляется сушкой при t =18... 20°С в течение 15...30 мин, а затем при t=90... 100 °С в течение 30 мин.

    Перенос изображения с фотошаблона на пластину, покрытую слоем фоторезиста, реализуется путем экспонирования (рис. 1.10, в). Если процесс фотолитографии повторяется, то необходимо ранее полученный рисунок совместить с рисунком на фотошаблоне. Точность совмещения составляет 0,25... 0,5 мкм. В качестве источника света используют ксеоновые и ртутно-кварцевые лампы.

    На качество переноса существенно влияют дифракционные явления, возникающие при наличии зазоров между шаблоном и пластиной. Зазоры возникают вследствие неплоскостности подложки, достигающей 20 мкм. Качество переноса изображения с фотошаблона на слой фоторезиста может быть оценено только после проявления.

    Проявление скрытого изображения (рис. 1.10,г) в негативном фоторезисте заключается в удалении участков, находившихся под темными местами фотошаблона. В случае позитивного фоторезиста удаляются облученные участки. Негативные фоторезисты проявляют в органических растворителях (трихлорэтилене и др.), а позитивные- в щелочных растворах. Для улучшения защитных свойств полученный слой сушат при t=100... 120°С, а затем задубливают при t=200... 250°С в течение 30...40 мин.

    Требуемый рисунок схемы получают травлением не защищенных фоторезистом участков подложки в смеси азотной и плавиковой кислоты (рис. 1.10,д).

    Травление должно обеспечивать полное вытравливание оксидных пленок. При этом встречаются случаи, когда надо одновременно вытравливать оксидные пленки различной толщины. Точность операций травления зависит от точности изготовления негатива и качества фоторезиста. В случае плохой адгезии слоя с поверхностью заготовки плавиковая кислота может проникать под задубленный слой и вытравливать защищенные им участки оксидной пленки. Оставшийся на поверхности слой фоторезиста удаляют в растворителе, в качестве которых применяют органические жидкости и серную кислоту. После набухания пленки фоторезиста удаляют тампоном.

    Фотолитография является одним из основных технологических процессов при производстве полупроводниковых микросхем. Ее широкое применение объясняется высокой воспроизводимостью и разрешающей способностью, позволяющей получить рисунок малых размеров, универсальностью и гибкостью метода, высокой производительностью. Недостатком контактной фотолитографии являются быстрый износ фотошаблона и возникновение дефектов на соприкасающихся поверхностях. При контактировании фотошаблон вдавливает в фоторезистивный слой любые частицы (например, пылинки), которые приводят к дефектам в защитном слое фоторезиста.

    Пылинка на поверхности фоторезиста может воспрепятствовать его задублению и привести к образованию отверстия («прокола») в оксиде. Такой же эффект может дать пылинка или какие-нибудь темные точки на прозрачной части фотошаблона. Отверстие в за-темненной части фотошаблона может привести к неполному удалению оксидной пленки. Размеры частичек пыли соизмеримы с размерами областей контактных элементов. Их наличие приводит к браку микросхемы.

    Вероятность появления дефектов, возникающих вследствие попадания на поверхность кремния нерастворимых частиц пыли и других точечных загрязнений, пропорциональна площади пластины. Наличие таких дефектов ограничивает максимальную величину площади микросхем.

    Бесконтактная (проекционная) фотолитография устраняет контакт между фотошаблоном и слоем фоторезиста, что позволяет избежать целого ряда недостатков, присущих контактной фотолитографии.

    Метод проекционной печати заключается в проецировании изображения с фотошаблона на покрытую слоем фоторезиста пластину, размещенных на значительном расстоянии друг от друга. Размеры рисунка на фотошаблоне могут быть выполнены в увеличенном масштабе. При этом методе повышаются требования к плоскостности подложек и однородности толщины слоя фоторезиста. Высокие требования предъявляются к объективу, который должен обеспечить нужное разрешение на всем рабочем поле подложки. В настоящее время наилучшее разрешение (0,4 мкм) может быть получено на площади 2x2 мм. Трудности создания объективов, обеспечивающих высокое разрешение на большой площади, препятствуют широкому внедрению метода проекционной фотолитографии.

    Фотолитография на микрозазоре сочетает достоинства контактного и проекционного методов фотолитографии. При этом методе между пластиной и фотошаблоном устанавливается зазор в 10... 20 мкм. Такой зазор является достаточно большим, чтобы свести к минимуму явление дифракции, и в то же время достаточно малым, чтобы пренебречь нелинейными искажениями в зазоре при передаче изображения. Промышленное оборудование для экспонирования на микрозазоре значительно сложнее, чем установки для контактного экспонирования.

    Диффузия. Это процесс переноса легирующих примесей из областей с большей концентрацией в области с меньшей концентрацией. Если в твердом теле имеется градиент концентрации атомов какого-либо элемента, то создается направленное диффузионное движение, стремящееся выравнить концентрацию этих атомов во всем объеме. Процессы выравнивания концентрации происходят при достаточно высоких температурах, когда резко увеличиваются скорости движения частиц. Они характеризуются коэффициентом диффузии D, который определяется массой вещества, проникающего через единичную площадку за единицу времени при градиенте концентрации, равном единице.

    Коэффициент диффузии для определенного материала и диффундирующей примеси в первом приближении зависит только от температуры (экспоненциальная зависимость).

    Коэффициент диффузии элементов III группы (В, А1,Iп) в кремний на 1... 1,5 порядка выше, чем элементов V группы (As; P; Sb). Например, коэффициент диффузии бора в кремний при t==1473 К составляет 10,5 см 2 /с, мышьяка - 0,3 см 2 /с.


    Процесс диффузии осуществляется в два этапа. На первом этапе из бесконечного источника (газовая фаза) на кристалле создается слой, насыщенный примесью. Этот этап называется загонкой примеси. Он проводится в присутствии кислорода, что способствует образованию на поверхности слоя боросиликатного стекла (для примеси В 2 0 3) или фосфорно-силикатного стекла (для примеси Р 2 О 5). Параметрами процесса загонки являются концентрация диффузанта и кислорода в газе-носителе, скорость газовой смеси и время процесса. На втором этапе примесь подвергается перераспределению. Этот этап называется разгонкой примеси. Она выполняется при t = 800...1000°С в отсутствие внешнего источника примеси. Рабочей атмосферой служит смесь инертного газа с кислородом. Разгонка примеси в глубь пластины сопровождается выращиванием защитной пленки оксида кремния.

    Диффузию проводят в диапазоне температур 1100... 1300°С, а с учетом процесса загонки при двухстадийном процессе -1000... 1300°. Ниже 1000 °С значения коэффициентов диффузии очень малы и глубина диффузии незначительна. Выше 1300°С происходят нарушения поверхности пластин под действием высокой температуры.

    В качестве источников примеси применяют твердые, жидкие и газообразные соединения. Наиболее часто используют бор и фосфор в виде химических соединений В 2 0 5 , Р 2 О 5 и др.

    Диффузия в пото-ке газа-носителя из твердого источника выполняется в двухзонных установках (рис. 1.11). Источник примесей поме-щают в низкотемпературной зоне, а кремниевые плас-тины - в высокотемператур-ной зоне (1100... 1200°С). Трубу продувают смесью инертного газа с кислоро-дом и после установления температурного режима пластины помещают в рабочую зону. Испаряющи-еся молекулы примеси переносятся газом-носите-лем к пластинам и через слой жидкого стекла попадают на их поверхности. Жидкое стекло защищает поверхности пластин от испарения и попадания посторонних частиц. Недостатки процесса диффузии из твердого источника - сложность установки и трудность регулирования давления паров.

    Диффузия в потоке газа-носителя из жидкого источника проводится на более простой однозонной установке, где возможно получить более широкий интервал значений поверхностных концентраций. Недостаток такого процесса-большая токсичность концентраций.

    Диффузия в замкнутом объеме. Такая диффузия обеспечивает хорошую вос-производимость параметров диффузионных слоев. В этом случае пластину кремния и источ-ник примесей помещают в кварцевую ампулу, которую откачивают до давления 10 -3 Па или заполняют инертным газом. Затем ампулу запаивают и помещают в нагревательную печь. Молекулы пара примеси адсорбируются поверхностями полупроводниковой пластины и диффундируют в глубь ее. Такой метод применяют для диффузии бора, сурьмы, мышьяка, фосфора. Эти примеси являются высокотоксичными, а диффузия в ампуле исключает возможность отравления.

    Достоинством метода является возможность применения одной печи для диффузии нес-кольких примесей без взаимного их загрязнения, недостатком-низкая производительность и необходимость тщательного ведения процесса загрузки, так как любое вещество, попавшее в ампулу, диффундирует вместе с основной примесью.

    При всех способах диффузии необходимо обеспечить равномерное распределение температуры вдоль оси горячей зоны. Если допуск на глубину диффузионного слоя, равен 100%, то достаточно температуру выдерживать с точностью ±5°С. При допуске 20% температуру необходимо выдерживать с точностью ±0,5°С.

    Глубина диффузии изменяется от нескольких микрометров (для элементов схемы) до 10 ... 100 мкм для их изоляции. Большая глубина диффузии требует значительного времени (до 60 ч).

    Примеси, диффундирующие в кремний через отверстие в оксиде, распространяются в боковых направлениях почти на такую же величину, как и в глубину.

    Наиболее распространенными дефектами при диффузии являются отклонения в глубине диффузионного слоя. Причины таких отклонений - пыль и другие частицы, находящиеся на поверхности пластины, а также остатки фоторезиста. Дефекты поверхности и нарушения в кристаллической решетке способствуют более глубокому проникновению диффузанта в материал. Для уменьшения количества таких дефектов необходимо весьма тщательно соблюдать чистоту окружающей среды, материалов и оборудования на подготовительных операциях и в процессе проведения диффузии.

    Получение P-N -переходов методами диффузии позволяет в точных пределах контролировать глубину залегания и расположение перехода, концентрацию примесей и др. Недостаток процесса диффузии - невозможность получения четких переходов между областями с различными типами проводимости.

    Эпитаксия. Это процесс наращивания слоев с упорядоченной кристаллической структурой путем реализации ориентирующего действия подложки. В производстве интегральных схем применяют два вида эпитаксии: гомоэпитаксию и гетероэпитаксию.

    Гомоэпитаксия (автоэпитаксия) - процесс ориентированного наращивания кристалли-ческого вещества, не отличающегося по химическому составу от вещества подложки. Гетероэпитаксия - процесс ориентированного наращивания вещества, отличающегося по химическому составу от материала подложки.

    В процессе выращивания эпитаксиальной пленки в нее можно вводить легирующие примеси, создавая полупроводниковые пленки с нужным распределением концентрации и заданным типом проводимости. Благодаря этому удается получить четкие границы между областями с различным типом проводимости.

    Наибольшее распространение в настоящее время получил так называемый хлоридный способ получения эпитаксиальных слоев кремния, основанный на восстановлении тетрахлорида кремния. Процесс производится в реакторе, представляющем кварцевую трубу, помещенную в индуктор ВЧ-генератора. Реакторы могут быть горизонтального и вертикального типа.

    В горизонтальном реакторе (рис. 1.12) кремниевые пластины размещают на графитовых подставках. Обогрев осуществляется высокочастотным генератором. Перед началом процесса систему заполняют азотом или гелием для удаления воздуха и продувают чистым водородом, который при температуре 1200°С вступает в реакцию с остатками оксидных пленок на поверхности подложек и почти полностью удаляет их. Затем камеру заполняют

    смесью НС1 и Н 2 для стравливания с пластины кремния слоя толщиной в несколько микрометров. С помощью операции газового травления удаляются нарушенный слой и остатки Si0 2 . Эпитаксиальные пленки получаются без структурных дефектов. После очистки систему в течение нескольких минут продувают водородом, затем подают SiCl 4 и легирующую примесь. В результате реакции

    5iС1 4 (газ) + 2Н 2 (газ) ↔ Si (ТВЁРДОЕ) ↓ + 4НС1 (ГАЗ)

    тетрахлорид кремния разлагается, и на кремниевую подложку осаждается кремний, который принимает структуру лежащего под ним слоя. После окончания процесса подложку охлаждают потоком чистого водорода.

    Определенные соотношения водорода, хлорида кремния и примесей достигаются путем регулирования скорости подачи и температуры. Обычный расход газа-носителя (водорода) составляет 10 л/мин, а соотношение между количеством Н 2 и SiCl 4 составляет 1000: 1. В эту смесь вводится газообразный диффузант в количестве примерно 300 ч. на 1 000 000 ч. газовой смеси.

    В качестве донорной примеси применяют фосфин (РН 3) , а для получения слоя P -типа - диборан (В 2 Н 6) .

    Скорость роста эпитаксиальной пленки зависит от расхода SiCl 4 и Н 2 , температуры подложки, количества вводимой примеси и др. Эти переменные, которые можно контролировать достаточно точно, определяют продолжительность процесса.

    Наименьшая толщина эпитаксиальной пленки определяется наличием центров кристаллизации. Верхний предел толщины пленки, свободный от дефектов, равен 250 мкм. Наиболее часто толщина эпитаксиальной пленки составляет от 1 до 25 мкм.

    Большое влияние на качество эпитаксиального слоя оказывает чистота поверхности подложки и используемых газов. В качестве подложки используют пластины кремния толщиной 150...200 мкм, свободные от структурных дефектов. Допускаемое содержание примесей в газах равно нескольким частям примеси на миллион частей газа.

    Контроль полупроводниковых пластин осуществляют после финишного полирования, эпитаксии, оксидирования и диффузии. Он основан на визуальном наблюдении и анализе изображения пластины, сформированного на экране отраженным от поверхности пластины гомоцентрическим пучком видимого света.

    Участки пластины с нарушенной структурой вносят возмущения в пучок света, благодаря чему дефекты пластины видны на экране как изменения интенсивности света в изображении пластины, позволяющие оценить ее качество.

    Напыление тонких плёнок. Основными методами получения тонких плёнок являются термическое напылние (испарение) в вакууме и ионное распыление.

    Термическое напыление в вакууме. Такое напыление основано на свойстве атомов (молекул) металлов и некоторых других материалов при испарении в условиях высокого вакуума перемещаться прямолинейно (лучеобразно) и осаждаться на поверхности, поставленной на пути их движения.

    Установка для напыления в вакууме (рис. 1.13) состоит из плоской плиты 6, на которой устанавливается стеклянный или металличес-кий колпак 9. В последнем случае он снабжается смотровым стеклом. На плите предусмотрены два изолированных вакуумплотных вывода 4 для питания испарителя 3. На некотором расстоянии от испарителя помещается подложка 10, на которую наносится тонкая пленка. Подложка нагревается и до достижения заданного режима закрыта заслонкой 1.

    В соответствии с физическими процессами, происходящими при испарении в вакууме, можно выделить следующие этапы образования пленки: 1) перевод напыляемого материала в парообразное состояние; 2) перенос пара от источника испарения к подложке; 3) конденсация пара на подложке и образование пленки.

    Перевод напыляемого материала в парообразное состояние. В области образования паров происходит испарение материала, который нагревается до тех пор, пока давление его паров не превысит давления остаточных газов. При этом наиболее нагретые молекулы, обладающие высокой кинетической энергией, преодолевают силы молекулярного притяжения и отрываются от поверхности расплава. Вследствие резко пониженной теплопередачи в условиях высокого вакуума перегрева подложек не происходит.

    Для некоторых материалов условная температура испарения ниже температуры плавления. Например, хром имеет температуру плавления 1800°С, а испаряется при нагревании в вакууме при температуре 1205°С. Переход вещества из твердого состояния в парообразное минуя жидкое называется сублимацией.

    Перенос пара от источника испарения к подложке. Область переноса паров составляет 10...20 см. Чтобы траектории молекул испаряемого вещества были прямолинейными, длина свободного пробега молекул остаточного газа должна в 5... 10 раз превышать линейные размеры области переноса паров.

    Длина свободного пробега l - расстояние, проходимое молекулой пара вещества без столкновения с молекулами остаточных газов. В высоком вакууме, когда l ³ d (d - расстояние от источника испарения до подложки), молекулы испаряемого вещества пролета-ют расстояние практически без соударений. Такой поток испаряемого вещества называется молекулярным и для его создания необходим вакуум порядка 10-5... 10-6Па.

    Конденсация пара на подложке и образование пленки. Конденсация пара зависит от температуры подложки и плотности атомарного потока. Атомы испаряемого вещества адсорбируются на подложке после хаотической миграции по ее поверхности.

    По механическим и физическим свойствам тонкие плёнки существенно отличаются от объёмного материала. Например, удельная прочность некоторых плёнок примерно в 200 раз превышает прочность хорошо отожжённых объёмных образцов и в несколько раз - прочность материалов, подвергнутых холодной обработке. Это объясняется мелкокристалличексой структурой и малой пластичностью. Температура испарения металлов лежит в пределах от нескольких сотен градусов (например 430 о С у цезия) до нескольких тысяч (например, 3500 о С у вольфрама). В связи с этим при вакуумном испарении применяют испарители различной конструкции. По способу нагрева вещества испарители разделяют на резистивные, электронные и индукционые.

    В резистивных испарителях тепловая энергия получается за счет выделения теплоты при прохождении тока через нагреватель или непосредственно через испаряемый материал. Наиболее часто используют испарители с косвенным подогревом. В этом случае предусматривают специальные подогреватели, при помощи которых испаряемое вещество нагревается до требуемой температуры. Материалом испарителя обычно служит вольфрам, тантал, молибден и др.

    Выбор материала подогревателя определяется следующими требованиями: испаряемый материал в расплавленном состоянии должен хорошо смачивать подогреватель, образуя хороший тепловой контакт, и не должен вступать в химическую реакцию с материалом подогревателя. В основном применяют подогреватели из вольфрама, молибдена, тантала.

    Резистивные испарители не обеспечивают требуемого состава пленок при испарении сплавов. Вследствие различия в упругости паров различных компонентов состав пленки значительно отличается от исходного материала. Например, напыляемый сплав нихром (80% Ni и 20% Сг) образует на подложке пленку, имеющую состав 60% Ni и 40% Сг. Для получения пленок требуемого состава из многокомпонентных сплавов (например, МЛТ и др.) применяют метод микродозирования или взрывного испарения. При этом методе на ленточный испаритель, нагретый до температуры, превышающей на 200... 300°С температуру испарения наиболее тугоплавкого компонента, подается микродоза порошка испаряемого сплава с размерами частиц 100... 200 мкм. Испарение микродозы происходит практически мгновенно.

    В электронных испарителях кинетическая энергия электронов преобразуется в тепловую энергию. Испаряемый материал используется в виде сплошной проволоки, на свободный конец которой воздействует электронный луч. В связи с кратковременностью нагрева (10 -8 ... 10 -9 с) различные компоненты сложного соединения испаряются и осаждаются на подложку практически одновременно. Электронно-лучевой нагрев дает возможность испарять тугоплавкие металлы и их сплавы.

    Для повышения стабильности параметров тонкие металлические пленки подвергают термической обработке путем нагревания до t =300... 400° С. При этом происходит укрупнение кристаллов, связь между ними усиливается, пленка получается более плотной и компактной, а удельное электрическое сопротивление уменьшается.

    Вакуумное напыление широко применяют для получения резистивных пленок, проводников из меди, алюминия и некоторых других сплавов, диэлектрических покрытий из оксида кремния и др. Основными преимуществами процесса являются высокая чистота получаемой пленки, удобство контроля ее толщины в процессе напыления, простота выполнения. Наиболее существенные недостатки процесса - изменение процентного соотношения составляющих при испарении веществ сложного состава; малая равномерность пленки по толщине при осаждении на большую площадь из точечных источников; трудность испарения тугоплавких материалов; высокая инерционность процесса при использовании резистивных испарителей; сравнительно невысокая прочность сцепления пленки с подложкой.

    Ионное распыление. Оно основано на явлении разрушения твердых материалов при бомбардировке их поверхности ионизированными молекулами разряженного газа. Процесс не связан с высокими температурами и позволяет получать пленки тугоплавких металлов и сплавов. Различают следующие виды ионного распыления: катодное, ионно-плазменное и магнетронное.

    Катодное распыление («диод-ная» система) (рис. 1.14) производится в ва-куумной камере, где расположены два плоскопараллельных электрода. Один элек-трод (катод) изготовлен из распыляемого материала и является мишенью для бомбар-дировки. Другой электрод (анод) служит подложкой, на которой осаждается пленка. В вакуумной камере создается низкое давление (10 -3. .. 10 -4 Па), после чего заполняется инерт-ным газом (обычно аргоном) при давлении 1 ... 10 Па. При подаче высокого напряжения (1... 3 кВ) между электродами возникает самостоятельный тлеющий газовый разряд, возбуждаемый электронной эмиссией. Катод является источником электронов, необходи-мых для поддержания тлеющего разряда. Электроны движутся к аноду и при столк-новении с молекулами нейтрального газа выбивают новые электроны, что приводит к резкому нарастанию потока электронов. Молекула инертного газа при этом превра-щается из нейтральной в положительный ион, обладающий по сравнению с элек-троном большей массой. Так происходит ионизация газа, который с большим или равным количеством электронов и ионов называют плазмой. Электроны перемещаются к аноду и нейтрализуются. Положительные ионы движутся к другой границе плазмы и ускоряются в темном катодном пространстве, приобретая большие энергии для распыления мишени (катода). Атомы материала мишени с высокой энергией осаждаются на поверхности подложки, которая располагается достаточно близко к катоду. Обычно это расстояние состав-ляет полторы-две длины темного катодного пространства.

    Катодное реактивное распыление осуществляется в смеси инертного и активного газов. Оно позволяет получать различные по составу пленки. Разряд в смеси газов «аргон - кислород» применяют для получения оксидов. Реактивное распыление тантала в среде аргона с добавлением кислорода, азота и углерода позволяет получить ряд соединений с самыми различными свойствами.

    Ионно-плазменное распыление (трехэлектродная система) осуществляется при более низких давлениях (рис. 1.15).

    В камере создается давление 10 - 3Па и включается накал катода. Затем она заполняется инертным газом при давлении Ю-1Па. Создание газоразрядной плазмы обеспечивается дуговым разрядом, возникающим между анодом и катодом при напряжении в 150... 250 В. Источником электронов служит термокатод. Распыляемый материал (мишень) вводится в газовый разряд в качестве независимого электрода, не связанного с поддержанием разряда. Имитируемые термокатодом элек-троны ускоряются по направлению к аноду и ионизируют по пути молекулы остаточного газа. Плотность образующейся плазмы более чем на порядок превышает плотность плазмы тлеющего разряда. Катод-мишень и подложку помещают на противоположных границах активного плазменного пространства. Распы-ление начинается с того момента, когда к мишени прикладывают отрицательный по отношению к аноду потенциал в 200... 1000 В. Этот потенциал отталкивает электроны и притягивает ионы из плазменного простран-ства. Ионы бомбардируют мишень так же, как в рассмотренном «диодном» варианте. Распыляе-мые атомы, двигаясь преимущественно в направлении, перпендикулярном поверхно-сти, осаждаются на подложке. Распыление при низких давлениях дает возможность получить высокую адгезию пленки с подложкой за счет большей энергии распыляемых частиц. Так как при этом давлении длина свободного пробега молекул составляет несколько сантиметров, то распыляемые атомы на своем пути от мишени до подложки почти не соударяются с молекулами и ионами инертного газа и газовых примесей, что существенно уменьшает степень загрязненности пленки посторонними газовыми включениями. Возможность сокращения расстояния между мишенью и подложками связана с тем, что в триодной системе распыления образование электронов и ионов происходит автономно от мишени.

    Недостатками триодной системы являются малый срок службы проволочного катода и разная скорость распыления на отдельных участках плоской мишени.

    Высокочастотное ионное распыление применяют для распыления диэлектриков и полупровод-никовых материалов. В процессе обычного распыления проводящих материалов, ударяющихся о катод-мишень, ион нейтрального рабочего газа получает с мишени электрон и разряжается, превращаясь на некоторое время в нейтральную молекулу. Если распыляемый материал мишени- диэлектрик, то нейтрализации ионов на мишени не будет и она быстро покрывается слоем положительных зарядов, препятствующих дальнейшему распылению мишени.

    Влияние положительного заряда можно исключить, подавая к металлическому электроду, на котором закреплён распыляемый диэлектрик, переменное напряжение. В период, когда напряжение на мишени отрицательно, происходит её распыление, сопровождаемое накоплением положительного заряда. При смене полярности положительный заряд компенсируется электронами, вытягиваемыми из плазмы. Диэлектрические материалы можно распылять практически на любой частоте.

    Все элементы ИС и их соединения выполнены в едином технологическом цикле на общей подложке.

    Технологические процессы:

    а) наращивание полупроводникового материала на кремниевой подложке;

    б) термическое окисление кремния для получения слоя окисла SiO 2 , защищающего поверхность кристалла от внешней среды;

    в) фотолитография, обеспечивающая требуемые конфигурации пленок(SiO 2 , металл и т.п.) на поверхности подложки;

    г) локальная диффузия – перенос примесных атомов в ограниченные области полупроводника (в настоящее время – ионная имплантация легирующего вещества);

    д) напыление тонких (до 1 мкм) пленок;

    е) нанесение толстых (более 1 мкм) пленок путем использования специальных паст с их последующим вжиганием.

    ИС изготавливаются методами интегральной технологии , имеющей следующие отличительные особенности :

    1. Элементы, однотипные по способу изготовления, представляют собой или полупроводниковые p-n структуры с несколькими областями, различающиеся концентрацией примесей или пленочные структуры из проводящих, резистивных и диэлектрических пленок.

    2. Одновременно в едином технологическом цикле изготавливается большое количество одинаковых функциональных узлов, каждый из которых, в свою очередь, может содержать до сотен тысяч и более элементов.

    3. Сокращается количество технологических операций (сборка, монтаж элементов) на несколько порядков по сравнению с традиционными методами производства аппаратуры на дискретных элементах.

    4. Размеры элементов и соединений между ними уменьшаются до технологически возможных пределов.

    5. Низконадежные соединения элементов, выполненные с помощью пайки, исключаются и заменяются высоконадежными соединениями (путем металлизации).

    Последовательность основных этапов построения полупроводниковой ИС :

    1. Выращивание кристалла кремния.

    2. Разрезка на пластины (200…300мкм, Ø 40 – 150мм).

    3. Очистка поверхности пластин.

    4. Получение элементов и их соединений на пластине.

    5. Разрезка пластин на отдельные части (кристаллы).

    6. Закрепление в корпусе.

    7. Подсоединение выводов с контактными площадками.

    8. Герметизация корпуса.

    Пр. Фотолитография :

    1. Очистка пластин.

    2. Нанесение фоторезистора.

    4. Совмещение с фотошаблоном и экспонирование.

    5. Травление SiO 2 .

    6. Задубливание (сушка).

    7. Проявление.

    8. Удаление фоторезистора.

    Пр. Толстопленочная технология :

    1. Очистка подложек.

    2. Трафаретная печать.

    Описание схемы

    1. Номиналы пассивных элементов:

    R6 = R11 = 4.7 кОм

    • 2. Т1, Т2, Т3, Т4, Т5 - n-p-n транзисторы ИС; Т6 - p-n-p транзистор ИС;
    • 3. с=200 Ом/кВ
    • 4. Напряжение питания 15В
    • 5. Технология планарно-эпитаксиальная.
    • 6. Изоляция p-n переходом.

    Вывод 6 - питание; вывод 1 - земля.

    Технология изготовления ИМС

    Любые элементы полупроводниковых ИМС можно создать на основе максимум трех p-n-переходов и четырех слоев двух типов электропроводности (электронной и дырочной). Изоляция элементов часто осуществляется с помощью обратно смещенного p-n- перехода. Принцип этого способа изоляции заключается в том, что подачей большого отрицательного потенциала на p-подложку получают обратно смещенный p-n-переход на границе коллекторных областей и p-подложки. Сопротивление обратно смещенного p-n- перехода большое и достигает МОм, поэтому получается хорошая изоляция элементов друг от друга.

    Технология производства полупроводниковых ИМС представляет собой сложный процесс, включающий десятки операций, и описать его полностью в кратком методическом пособии и курсовой работе невозможно.

    Поэтому мы рассмотрим сокращенный маршрут изготовления ИМС с изоляцией элементов и обратно смещенными p-n-переходами методом планарно-эпитаксиальной технологии. Операция изоляции элементов осуществляется групповым методом, сочетается с технологией изготовления ИМС в целом и реализуется методом разделительной (изолирующей) диффузии на всю глубину эпитаксиального слоя. Эта технология позволяет получать необходимую степень легирования коллектора и подложки независимо друг от друга. При выборе высокоомной подложки и не очень высокоомного эпитаксиального слоя (коллектора) можно обеспечить оптимальные емкости перехода коллектор-база и его напряжение пробоя. Наличие эпитаксиального слоя позволяет точно регулировать толщину и сопротивление коллектора, которое, однако, остается достаточно высоким (70-100 Ом). Снижение сопротивления коллектора достигается созданием высоколегированного скрытого n + -слоя путем диффузии в p-подложку примеси n-типа перед наращиванием эпитаксиального слоя. Этот слой обеспечивает низкоомный путь току от активной коллекторной зоны к коллекторному контакту без снижения пробивного напряжения перехода коллектор-база.

    Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых ИМС с изоляцией элементов p-n- переходами:

    • 1) Механическая обработка поверхности рабочей стороны кремниевой пластины p-типа до 14-го класса чистоты и травление в парах HCl для удаления нарушенного слоя. Сначала пластины Si шлифуют до заданной толщины, затем полируют, подвергают травлению и промывают.
    • 2) Окисление для создания защитной маски при диффузии примеси n-типа. На поверхности кремния выращивается плотная пленка двуокиси кремния (SiO2), которая имеет близкие к кремнию коэффициент теплового расширения, что позволяет использовать ее как маску при диффузии. Наиболее технологичным методом получения пленок SiO2 является термическое окисление поверхности кремния. В качестве окисляющей среды используется сухой или увлажняющий кислород либо пары воды. Температура рабочей зоны при окислении 1100-1300С. Окисление проводится методом открытой трубы в потоке окислителя. В сухом кислороде выращивается наиболее совершенный по структуре окисный слой, но процесс окисления при этом проходит медленно (при Т=1200С, толщина слоя SiO2 составляет 0,1 мкм). На практике целесообразно проводить окисление в три стадии: в сухом кислороде, влажном кислороде и снова в сухом. Для стабилизации свойств защитных окисных слоев в процессе окисления в среду влажного кислорода или паров воды добавляют борную кислоту, двуокись титана и др.

    3) Фотолитография для вскрытия окон в окисле и проведение локальной диффузии в местах формирования скрытых слоев (рис. 3). Фотолитография это создание на поверхности подложки защитной маски малых размеров практически любой сложности, используемой в дальнейшем для проведения диффузии, эпитаксии и других процессов. Образуется она с помощью специального слоя, который называется фоторезист - материал, который меняет свою структуру под действием света. По способности изменять свойства при облучении фоторезисты бывают негативные и позитивные.

    Фоторезист должен быть чувствительным к облучению, иметь высокую разрешающую способность и кислотостойкость.

    На окисленную поверхность кремния с толщиной окисла 3000-6000 Г наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной, затем при температуре 100-150 С.

    Подложку совмещают с фотошаблоном и освещают. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200С в течении одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона.

    4) Диффузия для создания скрытого n+ слоя (рис. 4). Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС. Процесс диффузии определяет концентрационный профиль интегральной структуры и основные параметры компонентов ИМС. Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. При заданной температуре скорость диффузии определяется коэффициентом диффузии, который равен числу атомов, проходящих через поперечное сечение в 1 см2 за 1 с при градиенте концентрации 1 см-4. В качестве легирующих примесей в кремнии используется в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор-донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ.

    В производстве ИМС реализуют два типа диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси .

    Для создания заданного распределения примеси в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси .

    5) Снятие окисла и подготовка поверхности перед процессом эпитаксии (рис. 5).

    6) Формирование эпитаксиальной структуры (рис. 6). Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку подложки. Толщина его может быть от монослоя до нескольких десятков микрон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто- или гомоэпитаксия. В отличии от автоэпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.

    Эпитаксиальный процесс позволяет получать слои полупроводника, однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке. В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакций восстановления SiCl 4 , SiBr 4 . В реакционной камере на поверхности подложки в температурном диапазоне 1150-1270С протекает реакция

    SiCl4+2H2=Si+4HCl,

    в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.

    Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используется водород и азот.

    Толщина эпитаксиального слоя n-типа составляет 10-15 мкм с удельным сопротивлением 0,1-10 Ом*см. В эпитаксиальном слое формируются коллекторы транзисторов и карманы резисторов.

    7) Окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии (рис. 7).

    8) Фотолитография для вскрытия окон под разделительную диффузию (рис. 8).

    9) Проведение разделительной диффузии и создание изолированных карманов (рис. 9).

    Разделительная диффузия проводится в две стадии: первая (загонка)- при температуре 1100-1150С, вторая (разгонка)- при температуре 1200-1250С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника, разделенные p-n-переходами. В каждой изолированной области в результате последующих процессов формируется интегральный элемент.

    10) Окисление поверхности для проведения фотолитографии под базовую диффузию (рис. 10).

    11) Фотолитография для вскрытия окон под базовую диффузию (рис. 11).

    12) Формирование базового слоя диффузией примеси p-типа (рис. 12).

    13) Окисление поверхности для проведения четвертой фотолитографии (рис. 13).

    14) Фотолитография для вскрытия окон под эмиттерную диффузию (рис. 12).

    15) Формирование эмиттерного слоя диффузией примеси n-типа, а также последующее окисление поверхности (рис. 15).

    Эмиттерная диффузия проводится в одну стадию при температуре около 1050С. Одновременно с эмиттерами формируются области под контакты коллекторов. В качестве легирующей примеси используется фосфор. Толщина слоя d ? 0,5-2,0 мкм, концентрация акцепторов N ?10 21 cм -3 Используется для создания эмиттеров транзисторов, низкоомных резисторов, подлегирования коллекторных контактов и др.

    16) Пятая фотолитография для вскрытия контактных окон (рис. 16).

    17) Напыление пленки алюминия (рис. 17).

    Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной 1 мкм.

    18) Фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика (рис. 18).

    После фотолитографии металл обжигается в среде азота при температуре 500С.

    Расчет интегральных компонентов

    на тему: «Технология изготовления кристаллов полупроводниковых интегральных микросхем »

    Дисциплина: «Материаловедение и материалы электронных средств»

    Выполнил студент группы 31-Р

    Козлов А. Н.

    Руководитель Косчинская Е. В.

    Орел, 2004

    Введение

    Часть I. Аналитический обзор

    1.1 Интегральные схемы

    1.3 Характеристика монокристаллического кремния

    1.4 Обоснование применения монокристаллического кремния

    1.5 Технология получения монокристаллического кремния

    1.5.1 Получение кремния полупроводниковой чистоты

    1.5.2 Выращивание монокристаллов

    1.6 Механическая обработка монокристаллического кремния

    1.6.1 Калибровка

    1.6.2 Ориентация

    1.6.3 Резка

    1.6.4 Шлифовка и полировка

    1.6.5 Химическое травление полупроводниковых пластин и подложек

    1.7 Операция разделения подложек на платы

    1.7.1 Алмазное скрайбирование

    1.7.2 Лазерное скрайбирование

    1.8 Разламывание пластин на кристаллы

    Часть II. Расчет

    Заключение

    Список используемой литературы

    Технология изготовления интегральных микросхем представляет собой совокупность механических, физических, химических способов обработки различных материалов (полупроводников, диэлектриков, металлов), в результате которой создается ИС.

    Повышение производительности труда обусловлено в первую очередь совершенствованием технологии, внедрением прогрессивных технологических методов, стандартизацией технологического оборудования и оснастки, механизацией ручного труда на основе автоматизации технологических процессов. Значимость технологии в производстве полупроводниковых приборов и ИС особенно велика. Именно постоянное совершенствование технологии полупроводниковых приборов привело на определенном этапе ее развития к созданию ИС, а в дальнейшем - к широкому их производству.

    Производство ИС началось примерно с 1959 г. На основе предложенной к этому времени планарной технологии. Основой планарной технологии послужила разработка нескольких фундаментальных технологических методов. Наряду с разработкой технологических методов развитие ИС включало исследования принципов работы их элементов, изобретение новых элементов, совершенствование методов очистки полупроводниковых материалов, проведение их физико-химических исследований с целью установления таких важнейших характеристик, как предельные растворимости примесей, коэффициенты диффузии донорных и акцепторных примесей и др.

    За короткий исторический срок современная микроэлектроника стала одним из важнейших направлений научно-технического прогресса. Создание больших и сверхбольших интегральных микросхем, микропроцессоров и микропроцессорных систем позволило организовать массовое производство электронных вычислительных машин высокого быстродействия, различных видов электронной аппаратуры, аппаратуры управления технологическими процессами, систем связи, систем и устройств автоматического управления и регулирования.

    Микроэлектроника продолжает развиваться быстрыми темпами, как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.


    Часть I . Аналитический обзор

    1.1 Интегральные схемы

    В процессе развития микроэлектроники (МЭ) номенклатура ИС непрерывно изменялась. Главный тип ИС в настоящее время - полупроводниковые ИС.

    Классификация ИС.

    Классификация ИС может производиться по различным признакам, ограничимся одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

    Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники.

    Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки. В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщина пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше).

    Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные элементы типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т. п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

    Гибридной ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называются навесными, подчеркивая этим их, обособленность от основного технологического цикла получения пленочной части схемы.

    Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

    Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

    Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

    Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений - металлической разводкой.

    В данной курсовой работе рассмотрена технология изготовления плат полупроводниковых интегральных микросхем. Полупроводниковая интегральная микросхема – это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники. Размеры кристаллов у современных полупроводниковых интегральных микросхем достигают 20x20 мм, чем больше площадь кристалла, тем более многоэлементную ИС можно на ней разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

    1.2 Требования к полупроводниковым подложкам

    Полупроводники в виде пластин или дисков, вырезанных из монокристаллов, называются подложками. В их объеме и на поверхности методами травления, окисления, диффузии, эпитаксии, имплантации, фотолитографии, другими технологическими приемами формируются элементы микросхем электронных приборов и устройств.

    Качество поверхности подложки определяется ее микрорельефом (шероховатостью), кристаллическим совершенством поверхностных слоев и степенью их физико-химической чистоты. Поверхность подложки характеризуется неплоскостностью и непараллельностью. Высокие требования предъявляются и к обратной - нерабочей стороне подложки. Неодинаковая и неравноценная обработка обеих сторон подложки приводит к дополнительным остаточным механическим напряжениям и деформации кристалла, что обусловливает изгиб пластин.

    После механической обработки в тонком приповерхностном слое подложки возникает нарушенный слой. По глубине он может быть разделен на характерные зоны. Для кристаллов Ge, Si, GaAs и других после их резки и шлифования на глубине 0,3...0,5 средней высоты неровностей расположена рельефная зона, в которой наблюдаются одинаковые виды нарушений и дефектов монокристаллической структуры: монокристаллические сколы, невыкрошившиеся блоки, трещины, выступы и впадины различных размеров. После резки дефекты располагаются в основном под следами от режущей кромки алмазного диска в виде параллельных дорожек из скоплений дефектов, в шлифованных кристаллах - равномерно по сечению. При полировании первый слой представляет собой поверхностные неровности, относительно меньшие, чем при шлифовании, и в отличие от шлифованной поверхности он является аморфным. Второй слой также аморфный, его глубина в 2...3 раза больше, чем поверхностные неровности. Третий слой является переходным от аморфной структуры к ненарушенному монокристаллу и может содержать упругие или пластические деформации, дислокации, а в некоторых случаях и трещины. В процессе обработки и подготовки поверхности подложек полупроводников необходимо создание совершенных поверхностей, имеющих высокую степень плоскопараллельности при заданной кристаллографической ориентации, с полным отсутствием нарушенного слоя, минимальной плотностью поверхностных дефектов, дислокаций и т.д. Поверхностные загрязнения должны быть минимальными.

    3 Характеристика монокристаллического кремния

    Физико-химические свойства кремния

    1.Оптимальное значение ширины запрещенной зоны, которая обусловила достаточно низкую концентрацию собственных носителей и высокую рабочую температуру.

    2.Большой диапазон реально достижимых удельных сопротивлений в пределах от 10 -3 Ом-см (вырожденный) до 10 5 (близкий к собственному).

    3.Высокое значение модуля упругости, значительная жесткость (большая, чем, например, у стали).

    Как делают микросхемы

    тобы понять, в чем заключается основное различие между этими двумя технологиями, необходимо сделать краткий экскурс в саму технологию производства современных процессоров или интегральных микросхем.

    Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник — это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная. Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная — к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы — основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом — при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

    Как устроен КМОП-транзистор

    Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток. Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

    Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

    Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов. Остановимся более подробно на процессе изготовления микросхем, первый этап которого — получение кремниевых подложек.

    Шаг 1. Выращивание болванок

    Создание таких подложек начинается с выращивания цилиндрического по форме монокристалла кремния. В дальнейшем из таких монокристаллических заготовок (болванок) нарезают круглые пластины (wafers), толщина которых составляет приблизительно 1/40 дюйма, а диаметр — 200 мм (8 дюймов) или 300 мм (12 дюймов). Это и есть кремниевые подложки, служащие для производства микросхем.

    При формировании пластин из монокристаллов кремния учитывается то обстоятельство, что для идеальных кристаллических структур физические свойства в значительной степени зависят от выбранного направления (свойство анизотропии). К примеру, сопротивление кремниевой подложки будет различным в продольном и поперечном направлениях. Аналогично, в зависимости от ориентации кристаллической решетки, кристалл кремния будет по-разному реагировать на какие-либо внешние воздействия, связанные с его дальнейшей обработкой (например, травление, напыление и т.д.). Поэтому пластина должна быть вырезана из монокристалла таким образом, чтобы ориентация кристаллической решетки относительно поверхности была строго выдержана в определенном направлении.

    Как уже отмечалось, диаметр заготовки монокристалла кремния составляет либо 200, либо 300 мм. Причем диаметр 300 мм — это относительно новая технология, о которой мы расскажем ниже. Понятно, что на пластине такого диаметра может разместиться далеко не одна микросхема, даже если речь идет о процессоре Intel Pentium 4. Действительно, на одной подобной пластине-подложке формируется несколько десятков микросхем (процессоров), но для простоты мы рассмотрим лишь процессы, происходящие на небольшом участке одного будущего микропроцессора.

    Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

    После формирования кремниевой подложки наступает этап создания сложнейшей полупроводниковой структуры.

    Для этого в кремний нужно внедрить так называемые донорную и акцепторную примеси. Однако возникает вопрос — как осуществить внедрение примесей по точно заданному рисунку-шаблону? Для того чтобы это стало возможным, те области, куда не требуется внедрять примеси, защищают специальной пленкой из диоксида кремния, оставляя оголенными только те участки, которые подвергаются дальнейшей обработке (рис. 2). Процесс формирования такой защитной пленки нужного рисунка состоит из нескольких этапов.

    На первом этапе вся пластина кремния целиком покрывается тонкой пленкой диоксида кремния (SiO2), который является очень хорошим изолятором и выполняет функцию защитной пленки при дальнейшей обработке кристалла кремния. Пластины помещают в камеру, где при высокой температуре (от 900 до 1100 °С) и давлении происходит диффузия кислорода в поверхностные слои пластины, приводящая к окислению кремния и к образованию поверхностной пленки диоксида кремния. Для того чтобы пленка диоксида кремния имела точно заданную толщину и не содержала дефектов, необходимо строго поддерживать постоянную температуру во всех точках пластины в процессе окисления. Если же пленкой из диоксида кремния должна быть покрыта не вся пластина, то предварительно на кремниевую подложку наносится маска Si3N4, предотвращающая нежелательное окисление.

    Шаг 3. Нанесение фоторезистива

    После того как кремниевая подложка покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для защиты остальных областей от травления на поверхность пластины наносится слой так называемого фоторезиста. Термином «фоторезисты» обозначают светочувствительные и устойчивые к воздействию агрессивных факторов составы. Применяемые составы должны обладать, с одной стороны, определенными фотографическими свойствами (под воздействием ультрафиолетового света становиться растворимыми и вымываться в процессе травления), а с другой — резистивными, позволяющими выдерживать травление в кислотах и щелочах, нагрев и т.д. Основное назначение фоторезистов — создание защитного рельефа нужной конфигурации.

    Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолитографией и включает следующие основные операции: формирование слоя фоторезиста (обработка подложки, нанесение, сушка), формирование защитного рельефа (экспонирование, проявление, сушка) и передача изображения на подложку (травление, напыление и т.д.).

    Перед нанесением слоя фоторезиста (рис. 3) на подложку последняя подвергается предварительной обработке, в результате чего улучшается ее сцепление со слоем фоторезиста. Для нанесения равномерного слоя фоторезиста используется метод центрифугирования. Подложка помещается на вращающийся диск (центрифуга), и под воздействием центробежных сил фоторезист распределяется по поверхности подложки практически равномерным слоем. (Говоря о практически равномерном слое, учитывают то обстоятельство, что под действием центробежных сил толщина образующейся пленки увеличивается от центра к краям, однако такой способ нанесения фоторезиста позволяет выдержать колебания толщины слоя в пределах ±10%.)

    Шаг 4. Литография

    После нанесения и сушки слоя фоторезиста наступает этап формирования необходимого защитного рельефа. Рельеф образуется в результате того, что под действием ультрафиолетового излучения, попадающего на определенные участки слоя фоторезиста, последний изменяет свойства растворимости, например освещенные участки перестают растворяться в растворителе, которые удаляют участки слоя, не подвергшиеся освещению, или наоборот — освещенные участки растворяются. По способу образования рельефа фоторезисты делят на негативные и позитивные. Негативные фоторезисты под действием ультрафиолетового излучения образуют защитные участки рельефа. Позитивные фоторезисты, напротив, под воздействием ультрафиолетового излучения приобретают свойства текучести и вымываются растворителем. Соответственно защитный слой образуется в тех участках, которые не подвергаются ультрафиолетовому облучению.

    Для засветки нужных участков слоя фоторезиста используется специальный шаблон-маска. Чаще всего для этой цели применяются пластинки из оптического стекла с полученными фотографическим или иным способом непрозрачными элементами. Фактически такой шаблон содержит рисунок одного из слоев будущей микросхемы (всего таких слоев может насчитываться несколько сотен). Поскольку этот шаблон является эталоном, он должен быть выполнен с большой точностью. К тому же с учетом того, что по одному фотошаблону будет сделано очень много фотопластин, он должен быть прочным и устойчивым к повреждениям. Отсюда понятно, что фотошаблон — весьма дорогая вещь: в зависимости от сложности микросхемы он может стоить десятки тысяч долларов.

    Ультрафиолетовое излучение, проходя сквозь такой шаблон (рис. 4), засвечивает только нужные участки поверхности слоя фоторезиста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя. При этом открывается соответствующая часть слоя диоксида кремния.

    Несмотря на кажущуюся простоту фотолитографического процесса, именно этот этап производства микросхем является наиболее сложным. Дело в том, что в соответствии с предсказанием Мура количество транзисторов на одной микросхеме возрастает экспоненциально (удваивается каждые два года). Подобное возрастание числа транзисторов возможно только благодаря уменьшению их размеров, но именно уменьшение и «упирается» в процесс литографии. Для того чтобы сделать транзисторы меньше, необходимо уменьшить геометрические размеры линий, наносимых на слой фоторезиста. Но всему есть предел — сфокусировать лазерный луч в точку оказывается не так-то просто. Дело в том, что в соответствии с законами волновой оптики минимальный размер пятна, в который фокусируется лазерный луч (на самом деле это не просто пятно, а дифракционная картина), определяется кроме прочих факторов и длиной световой волны. Развитие литографической технологии со времени ее изобретения в начале 70-х шло в направлении сокращения длины световой волны. Именно это позволяло уменьшать размеры элементов интегральной схемы. С середины 80-х в фотолитографии стало использоваться ультрафиолетовое излучение, получаемое с помощью лазера. Идея проста: длина волны ультрафиолетового излучения меньше, чем длина волны света видимого диапазона, следовательно, возможно получить и более тонкие линии на поверхности фоторезиста. До недавнего времени для литографии использовалось глубокое ультрафиолетовое излучение (Deep Ultra Violet, DUV) с длиной волны 248 нм. Однако когда фотолитография перешагнула границу 200 нм, возникли серьезные проблемы, впервые поставившие под сомнение возможность дальнейшего использования этой технологии. Например, при длине волны меньше 200 мкм слишком много света поглощается светочувствительным слоем, поэтому усложняется и замедляется процесс передачи шаблона схемы на процессор. Подобные проблемы побуждают исследователей и производителей искать альтернативу традиционной литографической технологии.

    Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet — сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения с длиной волны 13 нм.

    Переход с DUV- на EUV-литографию обеспечивает более чем 10-кратное уменьшение длины волны и переход в диапазон, где она сопоставима с размерами всего нескольких десятков атомов.

    Применяемая сейчас литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, в то время как EUV-литография делает возможной печать линий гораздо меньшей ширины — до 30 нм. Управлять ультракоротким излучением не так просто, как кажется. Поскольку EUV-излучение хорошо поглощается стеклом, то новая технология предполагает использование серии из четырех специальных выпуклых зеркал, которые уменьшают и фокусируют изображение, полученное после применения маски (рис. 5 , , ). Каждое такое зеркало содержит 80 отдельных металлических слоев толщиной примерно в 12 атомов.

    Шаг 5. Травление

    После засвечивания слоя фоторезиста наступает этап травления (etching) с целью удаления пленки диоксида кремния (рис. 8).

    Часто процесс травления ассоциируется с кислотными ваннами. Такой способ травления в кислоте хорошо знаком радиолюбителям, которые самостоятельно делали печатные платы. Для этого на фольгированный текстолит лаком, выполняющим функцию защитного слоя, наносят рисунок дорожек будущей платы, а затем опускают пластину в ванну с азотной кислотой. Ненужные участки фольги стравливаются, обнажая чистый текстолит. Этот способ имеет ряд недостатков, главный из которых — невозможность точно контролировать процесс удаления слоя, так как слишком много факторов влияют на процесс травления: концентрация кислоты, температура, конвекция и т.д. Кроме того, кислота взаимодействует с материалом по всем направлениям и постепенно проникает под край маски из фоторезиста, то есть разрушает сбоку прикрытые фоторезистом слои. Поэтому при производстве процессоров используется сухой метод травления, называемый также плазменным. Такой метод позволяет точно контролировать процесс травления, а разрушение вытравливаемого слоя происходит строго в вертикальном направлении.

    При использовании сухого травления для удаления с поверхности пластины диоксида кремния применяется ионизированный газ (плазма), который вступает в реакцию с поверхностью диоксида кремния, в результате чего образуются летучие побочные продукты.

    После процедуры травления, то есть когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя. Таким образом, на кремниевой подложке остается рисунок, выполненный диоксидом кремния.

    Шаг 6. Диффузия (ионная имплантация)

    Напомним, что предыдущий процесс формирования необходимого рисунка на кремниевой подложке требовался для того, чтобы создать в нужных местах полупроводниковые структуры путем внедрения донорной или акцепторной примеси. Процесс внедрения примесей осуществляется посредством диффузии (рис. 9) — равномерного внедрения атомов примеси в кристаллическую решетку кремния. Для получения полупроводника n-типа обычно используют сурьму, мышьяк или фосфор. Для получения полупроводника p-типа в качестве примеси используют бор, галлий или алюминий.

    Для процесса диффузии легирующей примеси применяется ионная имплантация. Процесс имплантации заключается в том, что ионы нужной примеси «выстреливаются» из высоковольтного ускорителя и, обладая достаточной энергией, проникают в поверхностные слои кремния.

    Итак, по окончании этапа ионной имплантации необходимый слой полупроводниковой структуры создан. Однако в микропроцессорах таких слоев может насчитываться несколько. Для создания очередного слоя на полученном рисунке схемы выращивается дополнительный тонкий слой диоксида кремния. После этого наносятся слой поликристаллического кремния и еще один слой фоторезиста. Ультрафиолетовое излучение пропускается сквозь вторую маску и высвечивает соответствующий рисунок на фотослое. Затем опять следуют этапы растворения фотослоя, травления и ионной имплантации.

    Шаг 7. Напыление и осаждение

    Наложение новых слоев осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняются атомами металла; в результате на кристалле создаются металлические полоски — проводящие области. Таким образом в современных процессорах устанавливаются связи между слоями, формирующими сложную трехмерную схему. Процесс выращивания и обработки всех слоев длится несколько недель, а сам производственный цикл состоит из более чем 300 стадий. В результате на кремниевой пластине формируются сотни идентичных процессоров.

    Чтобы выдержать воздействия, которым подвергаются пластины в процессе нанесения слоев, кремниевые подложки изначально делаются достаточно толстыми. Поэтому, прежде чем разрезать пластину на отдельные процессоры, ее толщину уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на тыльную сторону подложки наносят слой специального материала, улучшающего крепление кристалла к корпусу будущего процессора.

    Шаг 8. Заключительный этап

    По окончании цикла формирования все процессоры тщательно тестируются. Затем из пластины-подложки с помощью специального устройства вырезаются конкретные, уже прошедшие проверку кристаллы (рис. 10).

    Каждый микропроцессор встраивается в защитный корпус, который также обеспечивает электрическое соединение кристалла микропроцессора с внешними устройствами. Тип корпуса зависит от типа и предполагаемого применения микропроцессора.

    После запечатывания в корпус каждый микропроцессор повторно тестируется. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

    Перспективные технологии

    Технологический процесс производства микросхем (в частности, процессоров) рассмотрен нами весьма упрощенно. Но даже такое поверхностное изложение позволяет понять технологические трудности, с которыми приходится сталкиваться при уменьшении размеров транзисторов.

    Однако, прежде чем рассматривать новые перспективные технологии, ответим на поставленный в самом начале статьи вопрос: что же такое проектная норма технологического процесса и чем, собственно, отличается проектная норма 130 нм от нормы 180 нм? 130 нм или 180 нм — это характерное минимальное расстояние между двумя соседними элементами в одном слое микросхемы, то есть своеобразный шаг сетки, к которой осуществляется привязка элементов микросхемы. При этом совершенно очевидно, что, чем меньше этот характерный размер, тем больше транзисторов можно разместить на одной и той же площади микросхемы.

    В настоящее время в производстве процессоров Intel используется 0,13-микронный технологический процесс. По этой технологии изготавливают процессор Intel Pentium 4 с ядром Northwood, процессор Intel Pentium III с ядром Tualatin и процессор Intel Celeron. В случае применения такого технологического процесса полезная ширина канала транзистора составляет 60 нм, а толщина оксидного слоя затвора не превышает 1,5 нм. Всего же в процессоре Intel Pentium 4 размещается 55 млн. транзисторов.

    Наряду с увеличением плотности размещения транзисторов в кристалле процессора, 0,13-микронная технология, пришедшая на смену 0,18-микронной, имеет и другие нововведения. Во-первых, здесь используются медные соединения между отдельными транзисторами (в 0,18-микронной технологии соединения были алюминиевыми). Во-вторых, 0,13-микронная технология обеспечивает более низкое энергопотребление. Для мобильной техники, например, это означает, что энергопотребление микропроцессоров становится меньше, а время работы от аккумуляторной батареи — больше.

    Ну и последнее нововведение, которое было воплощено при переходе на 0,13-микронный технологический процесс — это использование кремниевых пластин (wafer) диаметром 300 мм. Напомним, что до этого большинство процессоров и микросхем изготовлялись на основе 200-миллиметровых пластин.

    Увеличение диаметра пластин позволяет снизить себестоимость каждого процессора и увеличить выход продукции надлежащего качества. Действительно, площадь пластины диаметром 300 мм в 2,25 раза больше площади пластины диаметром 200 мм, соответственно и количество процессоров, получаемых из одной пластины диаметром 300 мм, в два с лишним раза больше.

    В 2003 году ожидается внедрение нового технологического процесса с еще меньшей проектной нормой, а именно 90-нанометрового. Новый технологический процесс, по которому корпорация Intel будет производить большую часть своей продукции, в том числе процессоры, наборы микросхем и коммуникационное оборудование, был разработан на опытном заводе D1C корпорации Intel по обработке 300-миллиметровых пластин в г.Хиллсборо (шт.Орегон).

    23 октября 2002 года корпорация Intel объявила об открытии нового производства стоимостью 2 млрд. долл. в Рио-Ранчо (шт.Нью-Мексико). На новом заводе, получившем название F11X, будет применяться современная технология, по которой будут производиться процессоры на 300-мм подложках с использованием технологического процесса с проектной нормой 0,13 микрон. В 2003 году завод будет переведен на технологический процесс с проектной нормой 90 нм.

    Кроме того, корпорация Intel уже заявила о возобновлении строительства еще одного производственного объекта на Fab 24 в Лейкслипе (Ирландия), который предназначен для изготовления полупроводниковых компонентов на 300-миллиметровых кремниевых подложках с 90-нанометровой проектной нормой. Новое предприятие общей площадью более 1 млн. кв. футов с особо чистыми помещениями площадью 160 тыс. кв. футов предполагается ввести в строй в первой половине 2004 года, и на нем будет работать более тысячи сотрудников. Стоимость объекта составляет около 2 млрд. долл.

    В 90-нанометровом процессе применяется целый ряд передовых технологий. Это и самые маленькие в мире серийно изготавливаемые КМОП-транзисторы с длиной затвора 50 нм (рис. 11), что обеспечивает рост производительности при одновременном снижении энергопотребления, и самый тонкий оксидный слой затвора среди всех когда-либо производившихся транзисторов — всего 1,2 нм (рис. 12), или менее 5 атомарных слоев, и первая в отрасли реализация высокоэффективной технологии напряженного кремния.

    Из перечисленных характеристик в комментариях нуждается, пожалуй, лишь понятие «напряженного кремния» (рис. 13). В таком кремнии расстояние между атомами больше, чем в обычном полупроводнике. Это, в свою очередь, обеспечивает более свободное протекание тока, аналогично тому, как на дороге с более широкими полосами движения свободнее и быстрее движется транспорт.

    В результате всех нововведений на 10-20% улучшаются рабочие характеристики транзисторов, при увеличении затрат на производство всего на 2%.

    Кроме того, в 90-нанометровом технологическом процессе используется семь слоев в микросхеме (рис. 14), что на один слой больше, чем в 130-нанометровом технологическом процессе, а также медные соединения.

    Все эти особенности в сочетании с 300-миллиметровыми кремниевыми подложками обеспечивают корпорации Intel выигрыш в производительности, объемах производства и себестоимости. В выигрыше оказываются и потребители, поскольку новый технологический процесс Intel позволяет продолжить развитие отрасли в соответствии с законом Мура, вновь и вновь повышая производительность процессоров.